Cut systems with relational morphisms for semiring-valued fuzzy structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402HSE" target="_blank" >RIV/61988987:17610/23:A2402HSE - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2075-1680/12/2/153" target="_blank" >https://www.mdpi.com/2075-1680/12/2/153</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/axioms12020153" target="_blank" >10.3390/axioms12020153</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cut systems with relational morphisms for semiring-valued fuzzy structures
Popis výsledku v původním jazyce
Many of the new $MV$-valued fuzzy structures, including intuitionistic, neutrosophic or fuzzy soft sets can be transformed into so-called $AMV$-valued fuzzy sets, or, equivalently, $R$-valued fuzzy sets, where $R$ is a so-called dual pair of semirings. This transformation allows any construction of $AMV$-valued fuzzy sets to be retransformed into an analogous construction for these new fuzzy structures. In this way, approximation theories for $R$-fuzzy sets, rough $R$-fuzzy sets theories, or $F$-transform theories for $R$-fuzzy sets have already been created and then retransformed for these new fuzzy structures. In the paper, we continue this trend and define, on the one hand, the theory of extensional $R$-fuzzy sets defined on sets with $R$-fuzzy similarity relations and power sets functors related to this theory and, at the same time, the theory of cuts with relational morphisms of these structures. Illustratively, the reverse transformations of some of these concepts into new fuzzy structures are presented.
Název v anglickém jazyce
Cut systems with relational morphisms for semiring-valued fuzzy structures
Popis výsledku anglicky
Many of the new $MV$-valued fuzzy structures, including intuitionistic, neutrosophic or fuzzy soft sets can be transformed into so-called $AMV$-valued fuzzy sets, or, equivalently, $R$-valued fuzzy sets, where $R$ is a so-called dual pair of semirings. This transformation allows any construction of $AMV$-valued fuzzy sets to be retransformed into an analogous construction for these new fuzzy structures. In this way, approximation theories for $R$-fuzzy sets, rough $R$-fuzzy sets theories, or $F$-transform theories for $R$-fuzzy sets have already been created and then retransformed for these new fuzzy structures. In the paper, we continue this trend and define, on the one hand, the theory of extensional $R$-fuzzy sets defined on sets with $R$-fuzzy similarity relations and power sets functors related to this theory and, at the same time, the theory of cuts with relational morphisms of these structures. Illustratively, the reverse transformations of some of these concepts into new fuzzy structures are presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Axioms
ISSN
2075-1680
e-ISSN
2075-1680
Svazek periodika
—
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
000938812600001
EID výsledku v databázi Scopus
2-s2.0-85148883344