Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Power Series Method for the Fuzzy Fractional Logistic Differential Equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402I3W" target="_blank" >RIV/61988987:17610/23:A2402I3W - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.worldscientific.com/doi/epdf/10.1142/S0218348X23400868" target="_blank" >https://www.worldscientific.com/doi/epdf/10.1142/S0218348X23400868</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218348X23400868" target="_blank" >10.1142/S0218348X23400868</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Power Series Method for the Fuzzy Fractional Logistic Differential Equation

  • Popis výsledku v původním jazyce

    Power series, as an important means to analyze functions in different complex settings, are employed in various applied areas to solve differential equations and nonlinear problems and provide the assessment of intervals of convergence. Accordingly, the fuzzy logistic differential equation using the Caputo operator has been studied in this paper. Accordingly, the fuzzy logistic differential equation using the Caputo operator has been studied in this paper. The generalized Hukuhara difference and the generalized Hukuhara derivative are also used, and a power series representation is proposed for the solution of the fuzzy fractional logistic equation. Afterward, power-series coefficients are obtained using a recursive formula. Finally, numerical experiments and illustrated results of the computations are presented to allow for more realistic decisions reflecting high complexity and underlying uncertainty. Thus, the numerical computations in our study reveal the effectiveness and accuracy of the power series method. Therefore, it is found that the fuzzy solution converges to the deterministic solution when uncertainty decreases, and, based on the technical analyses, it has been demonstrated that the results obtained are more fundamental in preventing geometric growth in nonlinear phenomena where uncertainties emerge due to impreciseness and inexactness.

  • Název v anglickém jazyce

    A Power Series Method for the Fuzzy Fractional Logistic Differential Equation

  • Popis výsledku anglicky

    Power series, as an important means to analyze functions in different complex settings, are employed in various applied areas to solve differential equations and nonlinear problems and provide the assessment of intervals of convergence. Accordingly, the fuzzy logistic differential equation using the Caputo operator has been studied in this paper. Accordingly, the fuzzy logistic differential equation using the Caputo operator has been studied in this paper. The generalized Hukuhara difference and the generalized Hukuhara derivative are also used, and a power series representation is proposed for the solution of the fuzzy fractional logistic equation. Afterward, power-series coefficients are obtained using a recursive formula. Finally, numerical experiments and illustrated results of the computations are presented to allow for more realistic decisions reflecting high complexity and underlying uncertainty. Thus, the numerical computations in our study reveal the effectiveness and accuracy of the power series method. Therefore, it is found that the fuzzy solution converges to the deterministic solution when uncertainty decreases, and, based on the technical analyses, it has been demonstrated that the results obtained are more fundamental in preventing geometric growth in nonlinear phenomena where uncertainties emerge due to impreciseness and inexactness.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    FRACTALS

  • ISSN

    0218-348X

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    2340086

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    11

  • Strana od-do

    1-11

  • Kód UT WoS článku

    001081869500001

  • EID výsledku v databázi Scopus

    2-s2.0-85164225571