A Power Series Method for the Fuzzy Fractional Logistic Differential Equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402I3W" target="_blank" >RIV/61988987:17610/23:A2402I3W - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/epdf/10.1142/S0218348X23400868" target="_blank" >https://www.worldscientific.com/doi/epdf/10.1142/S0218348X23400868</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218348X23400868" target="_blank" >10.1142/S0218348X23400868</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Power Series Method for the Fuzzy Fractional Logistic Differential Equation
Popis výsledku v původním jazyce
Power series, as an important means to analyze functions in different complex settings, are employed in various applied areas to solve differential equations and nonlinear problems and provide the assessment of intervals of convergence. Accordingly, the fuzzy logistic differential equation using the Caputo operator has been studied in this paper. Accordingly, the fuzzy logistic differential equation using the Caputo operator has been studied in this paper. The generalized Hukuhara difference and the generalized Hukuhara derivative are also used, and a power series representation is proposed for the solution of the fuzzy fractional logistic equation. Afterward, power-series coefficients are obtained using a recursive formula. Finally, numerical experiments and illustrated results of the computations are presented to allow for more realistic decisions reflecting high complexity and underlying uncertainty. Thus, the numerical computations in our study reveal the effectiveness and accuracy of the power series method. Therefore, it is found that the fuzzy solution converges to the deterministic solution when uncertainty decreases, and, based on the technical analyses, it has been demonstrated that the results obtained are more fundamental in preventing geometric growth in nonlinear phenomena where uncertainties emerge due to impreciseness and inexactness.
Název v anglickém jazyce
A Power Series Method for the Fuzzy Fractional Logistic Differential Equation
Popis výsledku anglicky
Power series, as an important means to analyze functions in different complex settings, are employed in various applied areas to solve differential equations and nonlinear problems and provide the assessment of intervals of convergence. Accordingly, the fuzzy logistic differential equation using the Caputo operator has been studied in this paper. Accordingly, the fuzzy logistic differential equation using the Caputo operator has been studied in this paper. The generalized Hukuhara difference and the generalized Hukuhara derivative are also used, and a power series representation is proposed for the solution of the fuzzy fractional logistic equation. Afterward, power-series coefficients are obtained using a recursive formula. Finally, numerical experiments and illustrated results of the computations are presented to allow for more realistic decisions reflecting high complexity and underlying uncertainty. Thus, the numerical computations in our study reveal the effectiveness and accuracy of the power series method. Therefore, it is found that the fuzzy solution converges to the deterministic solution when uncertainty decreases, and, based on the technical analyses, it has been demonstrated that the results obtained are more fundamental in preventing geometric growth in nonlinear phenomena where uncertainties emerge due to impreciseness and inexactness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FRACTALS
ISSN
0218-348X
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
2340086
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
001081869500001
EID výsledku v databázi Scopus
2-s2.0-85164225571