Fuzzy transform algorithm based on high-resolution compact discretization for three-dimensional nonlinear elliptic PDEs and convection–diffusion equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402N4T" target="_blank" >RIV/61988987:17610/23:A2402N4T - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00500-023-09146-0#citeas" target="_blank" >https://link.springer.com/article/10.1007/s00500-023-09146-0#citeas</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-023-09146-0" target="_blank" >10.1007/s00500-023-09146-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy transform algorithm based on high-resolution compact discretization for three-dimensional nonlinear elliptic PDEs and convection–diffusion equations
Popis výsledku v původním jazyce
This paper deals with a high-resolution algorithm that engages fuzzy transform to solve three-dimensional nonlinear elliptic partial differential equations. The scheme approximates the fuzzy components, which estimate fourth-order accurate solutions at the interior mesh points of the solution domain. The fuzzy components and triangular base functions will be approximated with a nineteen-point linear combination of solution values and related to exact solutions by a linear system. Such an arrangement along with compact discretization yields a block tridiagonal Jacobian matrix, and an iterative solver can efficiently compute them. The convergence analysis and error bound of the scheme are examined in detail. The method provides an order-preserving solution and applies to a comprehensive class of partial differential equations with nonlinear first-order partial derivatives. Numerical simulations with Helmholtz equation, advection–diffusion–reaction equation, and nonlinear elliptic sine–Gordan equation corroborate the utility, convergence rate, and enhance solution accuracy by employing a new scheme.
Název v anglickém jazyce
Fuzzy transform algorithm based on high-resolution compact discretization for three-dimensional nonlinear elliptic PDEs and convection–diffusion equations
Popis výsledku anglicky
This paper deals with a high-resolution algorithm that engages fuzzy transform to solve three-dimensional nonlinear elliptic partial differential equations. The scheme approximates the fuzzy components, which estimate fourth-order accurate solutions at the interior mesh points of the solution domain. The fuzzy components and triangular base functions will be approximated with a nineteen-point linear combination of solution values and related to exact solutions by a linear system. Such an arrangement along with compact discretization yields a block tridiagonal Jacobian matrix, and an iterative solver can efficiently compute them. The convergence analysis and error bound of the scheme are examined in detail. The method provides an order-preserving solution and applies to a comprehensive class of partial differential equations with nonlinear first-order partial derivatives. Numerical simulations with Helmholtz equation, advection–diffusion–reaction equation, and nonlinear elliptic sine–Gordan equation corroborate the utility, convergence rate, and enhance solution accuracy by employing a new scheme.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Soft Computing
ISSN
1432-7643
e-ISSN
1433-7479
Svazek periodika
—
Číslo periodika v rámci svazku
28.09.2023
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
26
Strana od-do
17525-17550
Kód UT WoS článku
001074767600006
EID výsledku v databázi Scopus
2-s2.0-85173033108