Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402I44" target="_blank" >RIV/61988987:17610/23:A2402I44 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2215016123002029" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2215016123002029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mex.2023.102206" target="_blank" >10.1016/j.mex.2023.102206</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations

  • Popis výsledku v původním jazyce

    This paper proposes a new high-resolution fuzzy transform algorithm for solving two-dimensional nonlinear elliptic partial differential equations (PDEs). The underlying new computational method implements the method of so-called approximating fuzzy components, which evaluate the solution values with fourth-order accuracy at internal mesh points. Triangular basic functions and fuzzy components are locally determined by linear combinations of solution values at nine points. Such a scheme connects the proposed method of approximating fuzzy components with the exact values of the solution using a linear system of equations. Compact approximations of high-resolution fuzzy components using nine points give a block tridiagonal Jacobi matrix. Apart from the numerical solution, it is easy to construct closed-form approximate solutions using a 2D spline interpolation polynomial from the available data with fuzzy components. The upper bounds of the approximation errors are estimated, as well as the convergence of the approximating solutions. Simulations with linear and nonlinear elliptical PDEs arising from quantum mechanics and convection-dominated diffusion phenomena are presented to confirm the usefulness of the new scheme and fourth-order convergence. To summarize:•The paper presents a high-resolution numerical method for the two-dimensions elliptic PDEs with nonlinear terms.•The combined effect of fuzzy transform and compact discretizations yields almost fourth-order accuracies to Schrodinger equation, convection-diffusion equation, and Burgers equation.•The high-order numerical scheme is computationally efficient and employs minimal data storage.

  • Název v anglickém jazyce

    A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations

  • Popis výsledku anglicky

    This paper proposes a new high-resolution fuzzy transform algorithm for solving two-dimensional nonlinear elliptic partial differential equations (PDEs). The underlying new computational method implements the method of so-called approximating fuzzy components, which evaluate the solution values with fourth-order accuracy at internal mesh points. Triangular basic functions and fuzzy components are locally determined by linear combinations of solution values at nine points. Such a scheme connects the proposed method of approximating fuzzy components with the exact values of the solution using a linear system of equations. Compact approximations of high-resolution fuzzy components using nine points give a block tridiagonal Jacobi matrix. Apart from the numerical solution, it is easy to construct closed-form approximate solutions using a 2D spline interpolation polynomial from the available data with fuzzy components. The upper bounds of the approximation errors are estimated, as well as the convergence of the approximating solutions. Simulations with linear and nonlinear elliptical PDEs arising from quantum mechanics and convection-dominated diffusion phenomena are presented to confirm the usefulness of the new scheme and fourth-order convergence. To summarize:•The paper presents a high-resolution numerical method for the two-dimensions elliptic PDEs with nonlinear terms.•The combined effect of fuzzy transform and compact discretizations yields almost fourth-order accuracies to Schrodinger equation, convection-diffusion equation, and Burgers equation.•The high-order numerical scheme is computationally efficient and employs minimal data storage.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MethodsX

  • ISSN

    2215-0161

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    26.04.2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    31

  • Strana od-do

    1-31

  • Kód UT WoS článku

    001053178900001

  • EID výsledku v databázi Scopus

    2-s2.0-85156233607