A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402I44" target="_blank" >RIV/61988987:17610/23:A2402I44 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2215016123002029" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2215016123002029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mex.2023.102206" target="_blank" >10.1016/j.mex.2023.102206</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations
Popis výsledku v původním jazyce
This paper proposes a new high-resolution fuzzy transform algorithm for solving two-dimensional nonlinear elliptic partial differential equations (PDEs). The underlying new computational method implements the method of so-called approximating fuzzy components, which evaluate the solution values with fourth-order accuracy at internal mesh points. Triangular basic functions and fuzzy components are locally determined by linear combinations of solution values at nine points. Such a scheme connects the proposed method of approximating fuzzy components with the exact values of the solution using a linear system of equations. Compact approximations of high-resolution fuzzy components using nine points give a block tridiagonal Jacobi matrix. Apart from the numerical solution, it is easy to construct closed-form approximate solutions using a 2D spline interpolation polynomial from the available data with fuzzy components. The upper bounds of the approximation errors are estimated, as well as the convergence of the approximating solutions. Simulations with linear and nonlinear elliptical PDEs arising from quantum mechanics and convection-dominated diffusion phenomena are presented to confirm the usefulness of the new scheme and fourth-order convergence. To summarize:•The paper presents a high-resolution numerical method for the two-dimensions elliptic PDEs with nonlinear terms.•The combined effect of fuzzy transform and compact discretizations yields almost fourth-order accuracies to Schrodinger equation, convection-diffusion equation, and Burgers equation.•The high-order numerical scheme is computationally efficient and employs minimal data storage.
Název v anglickém jazyce
A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations
Popis výsledku anglicky
This paper proposes a new high-resolution fuzzy transform algorithm for solving two-dimensional nonlinear elliptic partial differential equations (PDEs). The underlying new computational method implements the method of so-called approximating fuzzy components, which evaluate the solution values with fourth-order accuracy at internal mesh points. Triangular basic functions and fuzzy components are locally determined by linear combinations of solution values at nine points. Such a scheme connects the proposed method of approximating fuzzy components with the exact values of the solution using a linear system of equations. Compact approximations of high-resolution fuzzy components using nine points give a block tridiagonal Jacobi matrix. Apart from the numerical solution, it is easy to construct closed-form approximate solutions using a 2D spline interpolation polynomial from the available data with fuzzy components. The upper bounds of the approximation errors are estimated, as well as the convergence of the approximating solutions. Simulations with linear and nonlinear elliptical PDEs arising from quantum mechanics and convection-dominated diffusion phenomena are presented to confirm the usefulness of the new scheme and fourth-order convergence. To summarize:•The paper presents a high-resolution numerical method for the two-dimensions elliptic PDEs with nonlinear terms.•The combined effect of fuzzy transform and compact discretizations yields almost fourth-order accuracies to Schrodinger equation, convection-diffusion equation, and Burgers equation.•The high-order numerical scheme is computationally efficient and employs minimal data storage.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MethodsX
ISSN
2215-0161
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
26.04.2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
31
Strana od-do
1-31
Kód UT WoS článku
001053178900001
EID výsledku v databázi Scopus
2-s2.0-85156233607