Comparison of implicit time-discretization schemes for hybridized discontinuous Galerkin methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43966673" target="_blank" >RIV/49777513:23520/22:43966673 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11025/51473" target="_blank" >http://hdl.handle.net/11025/51473</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24132/acm.2022.786" target="_blank" >10.24132/acm.2022.786</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of implicit time-discretization schemes for hybridized discontinuous Galerkin methods
Popis výsledku v původním jazyce
The present study is focused on the application of two families of implicit time-integration schemes for general time-dependent balance laws of convection-diffusion-reaction type discretized by a hybridized discontinuous Galerkin method in space, namely backward differentiation formulas (BDF) and diagonally implicit Runge-Kutta (DIRK) methods. Special attention is devoted to embedded DIRK methods, which allow the incorporation of time step size adaptation algorithms in order to keep the computational effort as low as possible. The properties of the numerical solution, such as its order of convergence, are investigated by means of suitably chosen test cases for a linear convection-diffusion-reaction equation and the nonlinear system of Navier-Stokes equations. For problems considered in this work, the DIRK methods prove to be superior to high-order BDF methods in terms of both stability and accuracy.
Název v anglickém jazyce
Comparison of implicit time-discretization schemes for hybridized discontinuous Galerkin methods
Popis výsledku anglicky
The present study is focused on the application of two families of implicit time-integration schemes for general time-dependent balance laws of convection-diffusion-reaction type discretized by a hybridized discontinuous Galerkin method in space, namely backward differentiation formulas (BDF) and diagonally implicit Runge-Kutta (DIRK) methods. Special attention is devoted to embedded DIRK methods, which allow the incorporation of time step size adaptation algorithms in order to keep the computational effort as low as possible. The properties of the numerical solution, such as its order of convergence, are investigated by means of suitably chosen test cases for a linear convection-diffusion-reaction equation and the nonlinear system of Navier-Stokes equations. For problems considered in this work, the DIRK methods prove to be superior to high-order BDF methods in terms of both stability and accuracy.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied and Computational Mechanics
ISSN
1802-680X
e-ISSN
—
Svazek periodika
16
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
119-134
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85146916882