Directional monotonicity of multidimensional fusion functions with respect to admissible orders
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402LO8" target="_blank" >RIV/61988987:17610/23:A2402LO8 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011423000775" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011423000775</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2023.03.001" target="_blank" >10.1016/j.fss.2023.03.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Directional monotonicity of multidimensional fusion functions with respect to admissible orders
Popis výsledku v původním jazyce
The notion of directional monotonicity emerged as a relaxation of the monotonicity condition of aggregation functions. As the extension of aggregation functions to fuse more complex information than numeric data, directional monotonicity was extended to the framework of multidimensional data, with respect to the product order, which is a partial order. In this work, we present the notion of admissible order for multidimensional data and we define the concept of directional monotonicity for multidimensional fusion functions with respect to an admissible order. Moreover, we study the main properties of directionally monotone functions in this new context. We conclude that, while some of the properties are still valid (e.g. the set of directions of increasingness is still closed under convex combinations), some of the main ones no longer hold (e.g. there does not exist a finite set of directions that characterize standard monotonicity in terms of directional monotonicity).
Název v anglickém jazyce
Directional monotonicity of multidimensional fusion functions with respect to admissible orders
Popis výsledku anglicky
The notion of directional monotonicity emerged as a relaxation of the monotonicity condition of aggregation functions. As the extension of aggregation functions to fuse more complex information than numeric data, directional monotonicity was extended to the framework of multidimensional data, with respect to the product order, which is a partial order. In this work, we present the notion of admissible order for multidimensional data and we define the concept of directional monotonicity for multidimensional fusion functions with respect to an admissible order. Moreover, we study the main properties of directionally monotone functions in this new context. We conclude that, while some of the properties are still valid (e.g. the set of directions of increasingness is still closed under convex combinations), some of the main ones no longer hold (e.g. there does not exist a finite set of directions that characterize standard monotonicity in terms of directional monotonicity).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
001016726700001
EID výsledku v databázi Scopus
2-s2.0-85150247977