Pointwise directional increasingness and geometric interpretation of directionally monotone functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA20020W4" target="_blank" >RIV/61988987:17610/19:A20020W4 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025519305298" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025519305298</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2019.06.002" target="_blank" >10.1016/j.ins.2019.06.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pointwise directional increasingness and geometric interpretation of directionally monotone functions
Popis výsledku v původním jazyce
The relaxation of monotonicity requirements is a trend in the theory of aggregation functions. In the recent literature, we can find several relaxed forms of monotonicity, such as weak, directional, cone, ordered directional and strengthened directional monotonicity. All these forms of monotonicity are global properties in the sense that they are imposed for all the points in the domain of a function. In this work, we introduce a local notion of monotonicity called pointwise directional monotonicity, or directional monotonicity at a point. Based on this concept, we characterize all the previously defined notions of monotonicity and, in the final part of the paper, we present some geometric aspects of the global weaker forms of monotonicity, stressing their relations and singularities.
Název v anglickém jazyce
Pointwise directional increasingness and geometric interpretation of directionally monotone functions
Popis výsledku anglicky
The relaxation of monotonicity requirements is a trend in the theory of aggregation functions. In the recent literature, we can find several relaxed forms of monotonicity, such as weak, directional, cone, ordered directional and strengthened directional monotonicity. All these forms of monotonicity are global properties in the sense that they are imposed for all the points in the domain of a function. In this work, we introduce a local notion of monotonicity called pointwise directional monotonicity, or directional monotonicity at a point. Based on this concept, we characterize all the previously defined notions of monotonicity and, in the final part of the paper, we present some geometric aspects of the global weaker forms of monotonicity, stressing their relations and singularities.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORM SCIENCES
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
501
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
236-247
Kód UT WoS článku
000480663900015
EID výsledku v databázi Scopus
2-s2.0-85067045005