A framework for generalized monotonicity of fusion functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402LOA" target="_blank" >RIV/61988987:17610/23:A2402LOA - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011423000775" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011423000775</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.inffus.2023.101815" target="_blank" >10.1016/j.inffus.2023.101815</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A framework for generalized monotonicity of fusion functions
Popis výsledku v původním jazyce
The relaxation of the property of monotonicity is a trend in the theory of aggregation and fusion functions and several generalized forms of monotonicity have been introduced, most of which are based on the notion of directional monotonicity. In this paper, we propose a general framework for generalized monotonicity that encompasses the different forms of monotonicity that we can find in the literature. Additionally, we introduce various new forms of monotonicity that are not based on directional monotonicity. Specifically, we introduce dilative monotonicity, which requires that the function increases when the inputs have increased by a common factor, and a general form of monotonicity that is dependent on a function T and a subset of the domain Z. This two new generalized monotonicities are the basis to propose a set of different forms of monotonicity. We study the particularities of each of the new proposals and their links to the previous relaxed forms of monotonicity. We conclude that the introduction of dilative monotonicity complements the conditions of weak monotonicity for fusion functions and that (T,Z)-monotonicity yields a condition that is slightly stronger than weak monotonicity. Finally, we present an application of the introduced notions of monotonicity in sentiment analysis.
Název v anglickém jazyce
A framework for generalized monotonicity of fusion functions
Popis výsledku anglicky
The relaxation of the property of monotonicity is a trend in the theory of aggregation and fusion functions and several generalized forms of monotonicity have been introduced, most of which are based on the notion of directional monotonicity. In this paper, we propose a general framework for generalized monotonicity that encompasses the different forms of monotonicity that we can find in the literature. Additionally, we introduce various new forms of monotonicity that are not based on directional monotonicity. Specifically, we introduce dilative monotonicity, which requires that the function increases when the inputs have increased by a common factor, and a general form of monotonicity that is dependent on a function T and a subset of the domain Z. This two new generalized monotonicities are the basis to propose a set of different forms of monotonicity. We study the particularities of each of the new proposals and their links to the previous relaxed forms of monotonicity. We conclude that the introduction of dilative monotonicity complements the conditions of weak monotonicity for fusion functions and that (T,Z)-monotonicity yields a condition that is slightly stronger than weak monotonicity. Finally, we present an application of the introduced notions of monotonicity in sentiment analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Fusion
ISSN
1566-2535
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000992268300001
EID výsledku v databázi Scopus
2-s2.0-85153473455