Efficient Use of Large Language Models for Analysis of Text Corpora
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA2502N5Z" target="_blank" >RIV/61988987:17610/24:A2502N5Z - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/24:00381571
Výsledek na webu
<a href="https://www.scitepress.org/Papers/2024/123498/123498.pdf" target="_blank" >https://www.scitepress.org/Papers/2024/123498/123498.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012349800003654" target="_blank" >10.5220/0012349800003654</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Use of Large Language Models for Analysis of Text Corpora
Popis výsledku v původním jazyce
In this paper, we propose an efficient approach for tracking a given phenomenon in a corpus using natural language processing (NLP) methods. The topic of tracking phenomena in a corpus is important, especially in the fields of sociology, psychology, and economics, which study human behavior in society. Unlike existing approaches that rely on universal large language models (LLMs), which are computationally expensive, we focus on using computationally less expensive methods. These methods allow for high data processing speed while maintaining high accuracy. Our approach is inspired by the cascade approach to optimization, where we first roughly filter out unwanted information and then gradually use more accurate models, which are computationally more expensive. In this way, we are able to process large amounts of data with high accuracy using different models, while also reducing the overall cost of computations. To demonstrate the proposed method, we chose a task that consists of finding the frequency of occurrence of a certain phenomenon in a large text corpus, which is divided into individual months of the year. In practice, this means that we can, for example, use Internet discussions to find out how much people are discussing a particular topic. The entire solution is presented as a pipeline, which consists of individual phases that successively process text data using methods selected to minimize the overall cost of processing all data.
Název v anglickém jazyce
Efficient Use of Large Language Models for Analysis of Text Corpora
Popis výsledku anglicky
In this paper, we propose an efficient approach for tracking a given phenomenon in a corpus using natural language processing (NLP) methods. The topic of tracking phenomena in a corpus is important, especially in the fields of sociology, psychology, and economics, which study human behavior in society. Unlike existing approaches that rely on universal large language models (LLMs), which are computationally expensive, we focus on using computationally less expensive methods. These methods allow for high data processing speed while maintaining high accuracy. Our approach is inspired by the cascade approach to optimization, where we first roughly filter out unwanted information and then gradually use more accurate models, which are computationally more expensive. In this way, we are able to process large amounts of data with high accuracy using different models, while also reducing the overall cost of computations. To demonstrate the proposed method, we chose a task that consists of finding the frequency of occurrence of a certain phenomenon in a large text corpus, which is divided into individual months of the year. In practice, this means that we can, for example, use Internet discussions to find out how much people are discussing a particular topic. The entire solution is presented as a pipeline, which consists of individual phases that successively process text data using methods selected to minimize the overall cost of processing all data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICPRAM 2024
ISBN
978-989758684-2
ISSN
2184-4313
e-ISSN
—
Počet stran výsledku
11
Strana od-do
695-705
Název nakladatele
—
Místo vydání
Roma, Italy
Místo konání akce
Roma, Italy
Datum konání akce
28. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—