Some general fusion and transformation frames for merging basic uncertain information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA25038DU" target="_blank" >RIV/61988987:17610/24:A25038DU - isvavai.cz</a>
Výsledek na webu
<a href="https://linkinghub.elsevier.com/retrieve/pii/S0888613X2300213X" target="_blank" >https://linkinghub.elsevier.com/retrieve/pii/S0888613X2300213X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2023.109082" target="_blank" >10.1016/j.ijar.2023.109082</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Some general fusion and transformation frames for merging basic uncertain information
Popis výsledku v původním jazyce
The Basic Uncertain Information (BUI) is a recently introduced type of uncertain data that has rapidly undergone development and practical application. The existing aggregation operators designed for BUI solely encompass the weighted mean and Choquet integral. The present study puts forth a set of general information fusion frameworks and methodologies aimed at gathering BUI granules. The first mode yields BUI granules as its output, whereas the subsequent two modes generate outputs in the form of interval values. The paper includes numerical examples and applications that correspond to the presented findings. The present study conducts an analysis of various mathematical properties pertaining to the three BUI fusion modes that have been proposed. These properties include idempotency, monotonicities, certainty derived inclusion, certainty monotonicity, homogeneities, non-symmetricity, comonotone additivities, and continuities. The proposals and analyses presented in this work are of a general nature and have the potential to inspire various practical specifications.
Název v anglickém jazyce
Some general fusion and transformation frames for merging basic uncertain information
Popis výsledku anglicky
The Basic Uncertain Information (BUI) is a recently introduced type of uncertain data that has rapidly undergone development and practical application. The existing aggregation operators designed for BUI solely encompass the weighted mean and Choquet integral. The present study puts forth a set of general information fusion frameworks and methodologies aimed at gathering BUI granules. The first mode yields BUI granules as its output, whereas the subsequent two modes generate outputs in the form of interval values. The paper includes numerical examples and applications that correspond to the presented findings. The present study conducts an analysis of various mathematical properties pertaining to the three BUI fusion modes that have been proposed. These properties include idempotency, monotonicities, certainty derived inclusion, certainty monotonicity, homogeneities, non-symmetricity, comonotone additivities, and continuities. The proposals and analyses presented in this work are of a general nature and have the potential to inspire various practical specifications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING
ISSN
0888-613X
e-ISSN
1873-4731
Svazek periodika
—
Číslo periodika v rámci svazku
January 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001125941200001
EID výsledku v databázi Scopus
2-s2.0-85177842134