Non-monotone projected gradient method in linear elasticity contact problems with given friction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F20%3A10245722" target="_blank" >RIV/61989100:27120/20:10245722 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/20:10245722 RIV/61989100:27730/20:10245722 RIV/68145535:_____/20:00559266
Výsledek na webu
<a href="https://www.mdpi.com/2071-1050/12/20/8674/htm" target="_blank" >https://www.mdpi.com/2071-1050/12/20/8674/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su12208674" target="_blank" >10.3390/su12208674</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non-monotone projected gradient method in linear elasticity contact problems with given friction
Popis výsledku v původním jazyce
We are focusing on the algorithms for solving the large-scale convex optimization problem in linear elasticity contact problems discretized by Finite Element method (FEM). The unknowns of the problem are the displacements of the FEM nodes, the corresponding objective function is defined as a convex quadratic function with symmetric positive definite stiffness matrix and additional non-linear term representing the friction in contact. The feasible set constraints the displacement subject to non-penetration conditions. The dual formulation of this optimization problem is well-known as a Quadratic Programming (QP) problem and can be considered as a most basic non-linear optimization problem. Understanding these problems and the development of efficient algorithms for solving them play the crucial role in the large-scale problems in practical applications. We shortly review the theory and examine the behavior and the efficiency of Spectral Projected Gradient method modified for QP problems (SPG-QP) on the solution of a toy example in MATLAB environment. (C) 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Název v anglickém jazyce
Non-monotone projected gradient method in linear elasticity contact problems with given friction
Popis výsledku anglicky
We are focusing on the algorithms for solving the large-scale convex optimization problem in linear elasticity contact problems discretized by Finite Element method (FEM). The unknowns of the problem are the displacements of the FEM nodes, the corresponding objective function is defined as a convex quadratic function with symmetric positive definite stiffness matrix and additional non-linear term representing the friction in contact. The feasible set constraints the displacement subject to non-penetration conditions. The dual formulation of this optimization problem is well-known as a Quadratic Programming (QP) problem and can be considered as a most basic non-linear optimization problem. Understanding these problems and the development of efficient algorithms for solving them play the crucial role in the large-scale problems in practical applications. We shortly review the theory and examine the behavior and the efficiency of Spectral Projected Gradient method modified for QP problems (SPG-QP) on the solution of a toy example in MATLAB environment. (C) 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainability
ISSN
2071-1050
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000583086900001
EID výsledku v databázi Scopus
2-s2.0-85093122217