Cosmological constant and AdS spacetimes from Minkowski spheres
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F22%3A10250361" target="_blank" >RIV/61989100:27120/22:10250361 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/10.1142/S0219887822501146" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0219887822501146</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219887822501146" target="_blank" >10.1142/S0219887822501146</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cosmological constant and AdS spacetimes from Minkowski spheres
Popis výsledku v původním jazyce
A theory of gravity without masses can be constructed starting from Minkowski M-(p,M-q) spaces. The corresponding adapted (p, q) Minkowski potentials, gradients and Laplacians built on each signature lead to a field equation similar to the Newton-Laplace one. In this framework, the anti-de Sitter spacetime is a hypersurface described by a constant potential of Minkowski gravitational force in absence of matter. We show that the cosmological constant of the anti-de Sitter spacetimes is related to a geometric property of Minkowski spheres: the centro-affine conservation of volumes defined from the so-called Minkowski-Tzizteica affine spheres. It is possible to show the connection between the anti-de Sitter AdS(2, 3) space, the non-Euclidean geometry and the difference between Minkowski M-(2,M-3) sphere and the pseudosphere seen as a surface of the 3-Euclidean space. According to a suitable parameterization, the relation between de Sitter and anti-de Sitter spacetimes in any dimension is fixed. As a consequence, the light can travel in any anti-de Sitter spacetime defining the geodesic structure. These considerations can be recast in terms of Einstein field equations with cosmological constant and extended to f(R) gravity.
Název v anglickém jazyce
Cosmological constant and AdS spacetimes from Minkowski spheres
Popis výsledku anglicky
A theory of gravity without masses can be constructed starting from Minkowski M-(p,M-q) spaces. The corresponding adapted (p, q) Minkowski potentials, gradients and Laplacians built on each signature lead to a field equation similar to the Newton-Laplace one. In this framework, the anti-de Sitter spacetime is a hypersurface described by a constant potential of Minkowski gravitational force in absence of matter. We show that the cosmological constant of the anti-de Sitter spacetimes is related to a geometric property of Minkowski spheres: the centro-affine conservation of volumes defined from the so-called Minkowski-Tzizteica affine spheres. It is possible to show the connection between the anti-de Sitter AdS(2, 3) space, the non-Euclidean geometry and the difference between Minkowski M-(2,M-3) sphere and the pseudosphere seen as a surface of the 3-Euclidean space. According to a suitable parameterization, the relation between de Sitter and anti-de Sitter spacetimes in any dimension is fixed. As a consequence, the light can travel in any anti-de Sitter spacetime defining the geodesic structure. These considerations can be recast in terms of Einstein field equations with cosmological constant and extended to f(R) gravity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Geometric Methods in Modern Physics
ISSN
0219-8878
e-ISSN
1793-6977
Svazek periodika
19
Číslo periodika v rámci svazku
08
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
28
Strana od-do
"nestrankovano"
Kód UT WoS článku
000812255500012
EID výsledku v databázi Scopus
2-s2.0-85129110516