Scalable TFETI based dynamic contact algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F11%3A86092851" target="_blank" >RIV/61989100:27230/11:86092851 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/11:86092851
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scalable TFETI based dynamic contact algorithm
Popis výsledku v původním jazyce
The TFETI based domain decomposition method is adapted in order that it can be implemented into the time stepping Newmark scheme for the solution to dynamic frictionless contact problems accompanied by geometric and material non-linear effects. Our approach stems from application of our own in a sense optimal MPGRP algorithm to solution to strictly convex bound constrained quadratic programming problems with preconditioning by the conjugate projector to the subspace defined by the trace of the rigid body modes on the fictitious interfaces between sub-domains. The time integration requires a special treatment to guarantee stability and removal of undesired non-physical oscillation of solution along the contact interfaces. We applied the contact stabilised Newmark scheme that reduces the solution to a sequence of quadratic programming problems with inequality constraints describing the non-interpenetration condition along the contact interfaces. We also show that our transient algorithm can be applied to solution to problems exhibiting both geometric and material non-linearities. Results of numerical experiments document that the proposed algorithm is robust, highly accurate and exhibit both parallel and numerical scalabilities.
Název v anglickém jazyce
Scalable TFETI based dynamic contact algorithm
Popis výsledku anglicky
The TFETI based domain decomposition method is adapted in order that it can be implemented into the time stepping Newmark scheme for the solution to dynamic frictionless contact problems accompanied by geometric and material non-linear effects. Our approach stems from application of our own in a sense optimal MPGRP algorithm to solution to strictly convex bound constrained quadratic programming problems with preconditioning by the conjugate projector to the subspace defined by the trace of the rigid body modes on the fictitious interfaces between sub-domains. The time integration requires a special treatment to guarantee stability and removal of undesired non-physical oscillation of solution along the contact interfaces. We applied the contact stabilised Newmark scheme that reduces the solution to a sequence of quadratic programming problems with inequality constraints describing the non-interpenetration condition along the contact interfaces. We also show that our transient algorithm can be applied to solution to problems exhibiting both geometric and material non-linearities. Results of numerical experiments document that the proposed algorithm is robust, highly accurate and exhibit both parallel and numerical scalabilities.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA101%2F08%2F0574" target="_blank" >GA101/08/0574: Řešení velmi náročných kontaktních úloh s dalšími nelinearitami moderními matematickými metodami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing
ISBN
978-1-905088-45-4
ISSN
—
e-ISSN
—
Počet stran výsledku
15
Strana od-do
1730-1745
Název nakladatele
Civil-Comp Press
Místo vydání
Kippen, Stirlingshire
Místo konání akce
Chania
Datum konání akce
6. 9. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—