Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Transportation Problem Model Supplemented with Optimisation of Vehicle Deadheading and Single Depot Parking

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F17%3A10237054" target="_blank" >RIV/61989100:27230/17:10237054 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf" target="_blank" >http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Transportation Problem Model Supplemented with Optimisation of Vehicle Deadheading and Single Depot Parking

  • Popis výsledku v původním jazyce

    The transportation problem belongs to one of specialized problems of operations research. Its basic form is devoted to optimisation of transportation plans – how to supply customers from storehouses with homogeneous types of consignments. Optimisation criterions which are most often used are the total transportation costs or the total covered distance. In practice, we can find many possible applications of the transportation problem. For example, in rail transport the transportation problem can be applied in optimisation of capacity smoothing, in road transport in optimisation of transportation of empty containers between combined transport terminals and their customers and so on. To fulfil each transportation plan, we need some vehicles, the vehicles are assigned to a depot (or depots) where they are parked. The transportation plan usually consists of three types of trips. The first type trips are represented by the trips when the vehicles are loaded (the productive trips). The trips of the second and third type are non-productive (deadheading). The second type trips correspond to the trips of the empty vehicles going from the places of their unloading to the places where the vehicles are loaded again. The third type trips are the trips between the vehicle depots and the first loading places or the last places of unloading and the depots. However, the basic model of the transportation problem does not consider these second and third type trips. An isolated solution for the individual types of the trips of such transportation problem is not suitable because decomposition does not assure optimality of such solution. The presented article presents a model in which all the mentioned trip types are mutually interconnected. That means a solution got by the mathematical model is optimal. The article is focused on an example with any number of the vehicles, all the vehicles have the same depot where they are parked and the capacity of all the vehicles is assumed to be 1.

  • Název v anglickém jazyce

    Transportation Problem Model Supplemented with Optimisation of Vehicle Deadheading and Single Depot Parking

  • Popis výsledku anglicky

    The transportation problem belongs to one of specialized problems of operations research. Its basic form is devoted to optimisation of transportation plans – how to supply customers from storehouses with homogeneous types of consignments. Optimisation criterions which are most often used are the total transportation costs or the total covered distance. In practice, we can find many possible applications of the transportation problem. For example, in rail transport the transportation problem can be applied in optimisation of capacity smoothing, in road transport in optimisation of transportation of empty containers between combined transport terminals and their customers and so on. To fulfil each transportation plan, we need some vehicles, the vehicles are assigned to a depot (or depots) where they are parked. The transportation plan usually consists of three types of trips. The first type trips are represented by the trips when the vehicles are loaded (the productive trips). The trips of the second and third type are non-productive (deadheading). The second type trips correspond to the trips of the empty vehicles going from the places of their unloading to the places where the vehicles are loaded again. The third type trips are the trips between the vehicle depots and the first loading places or the last places of unloading and the depots. However, the basic model of the transportation problem does not consider these second and third type trips. An isolated solution for the individual types of the trips of such transportation problem is not suitable because decomposition does not assure optimality of such solution. The presented article presents a model in which all the mentioned trip types are mutually interconnected. That means a solution got by the mathematical model is optimal. The article is focused on an example with any number of the vehicles, all the vehicles have the same depot where they are parked and the capacity of all the vehicles is assumed to be 1.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20104 - Transport engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mathematical Methods in Economics: MME 2017 : 35th international conference : book of abstracts : Hradec Králové, Czech Republic, September 13th-15th, 2017

  • ISBN

    978-80-7435-677-3

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    6

  • Strana od-do

    789-794

  • Název nakladatele

    Gaudeamus

  • Místo vydání

    Hradec Králové

  • Místo konání akce

    Hradec Králové

  • Datum konání akce

    13. 9. 2017

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku