Facility Location Problems with Semi-fixed Costs and Time Availability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F18%3A10240107" target="_blank" >RIV/61989100:27230/18:10240107 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21260/18:00323250
Výsledek na webu
<a href="https://mme2018.fm.vse.cz/wp-content/uploads/2018/09/MME2018-Electronic_proceedings.pdf" target="_blank" >https://mme2018.fm.vse.cz/wp-content/uploads/2018/09/MME2018-Electronic_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Facility Location Problems with Semi-fixed Costs and Time Availability
Popis výsledku v původním jazyce
Logistic chains must be planned efficiently and economically. Effectiveness demands goods being delivered to the required quality while economic criteria ask for delivery of goods at minimal cost. The following article considers the economic facets of the delivery process as expressed against the total costs of the process. Operation research methods, specifically mathematical programming models, will be used to calculate economic optimization scenarios. A range of distribution problems can be calculated by means of mathematical programming. Mathematical models applied to various problems may differ: some variants of the problems include locations of warehouses which are known; for others warehouse locations must be determined. In addition, particular customers may require deliveries from different locations at the same time; other customers may restrict deliveries to a single supplier. This article examines a problem in which warehouse locations must be determined (potential locations are known) and each customer may only take delivery from a single (operational) storage point. This type of problems is termed a facility location problem. In the course of this problem it shall be assumed that storage points at each location may be set up in any of multiple variants, which differ in capacity and subsequent associated setup costs. The optimization criteria taken into account will be the total costs for setting up a warehouse, its maintenance and cargo delivering. In addition to these cost criteria, the problem will take into account a second variable expressing the worst (maximum) time availability. A requirement for minimization will be set for both criteria. The STEM methodology will be used for calculations.
Název v anglickém jazyce
Facility Location Problems with Semi-fixed Costs and Time Availability
Popis výsledku anglicky
Logistic chains must be planned efficiently and economically. Effectiveness demands goods being delivered to the required quality while economic criteria ask for delivery of goods at minimal cost. The following article considers the economic facets of the delivery process as expressed against the total costs of the process. Operation research methods, specifically mathematical programming models, will be used to calculate economic optimization scenarios. A range of distribution problems can be calculated by means of mathematical programming. Mathematical models applied to various problems may differ: some variants of the problems include locations of warehouses which are known; for others warehouse locations must be determined. In addition, particular customers may require deliveries from different locations at the same time; other customers may restrict deliveries to a single supplier. This article examines a problem in which warehouse locations must be determined (potential locations are known) and each customer may only take delivery from a single (operational) storage point. This type of problems is termed a facility location problem. In the course of this problem it shall be assumed that storage points at each location may be set up in any of multiple variants, which differ in capacity and subsequent associated setup costs. The optimization criteria taken into account will be the total costs for setting up a warehouse, its maintenance and cargo delivering. In addition to these cost criteria, the problem will take into account a second variable expressing the worst (maximum) time availability. A requirement for minimization will be set for both criteria. The STEM methodology will be used for calculations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics : MME 2018 : 36th international conference : September 12-14, 2018, Jindřichův Hradec
ISBN
978-80-7378-371-6
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
579-584
Název nakladatele
MATFYZPRESS
Místo vydání
Praha
Místo konání akce
Jindřichův Hradec
Datum konání akce
12. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—