Two numerical approaches to the non-linear least-squares method via practical examples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F18%3A10241110" target="_blank" >RIV/61989100:27230/18:10241110 - isvavai.cz</a>
Výsledek na webu
<a href="http://evlm.stuba.sk/APLIMAT2018/proceedings/" target="_blank" >http://evlm.stuba.sk/APLIMAT2018/proceedings/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two numerical approaches to the non-linear least-squares method via practical examples
Popis výsledku v původním jazyce
Our contribution is meant to be an example of multidisciplinary approach to the teaching of numerical methods. By employing the Michaelis-Menten's model for enzyme kinetics, we show a practical application of numerical methods in biochemistry. Given the experimental data, we find a dependence of a reaction rate on a concentration of a substrate. In a preliminary section, we derive and explain The Michaelis-Menten kinetics from behaviour of biochemical reactions. In a first part, the problem is linearized and then solved by the least squares method. In a second part, we do not use linearization and solve the original problem by the Newton's method for systems of non-linear equations. We conclude our contribution with a comparison of both approaches and results. We also offer several problems for students to clarify and deepen their understanding of the linearization. Our solution is provided in a form of a thoroughly commented Matlab Code.
Název v anglickém jazyce
Two numerical approaches to the non-linear least-squares method via practical examples
Popis výsledku anglicky
Our contribution is meant to be an example of multidisciplinary approach to the teaching of numerical methods. By employing the Michaelis-Menten's model for enzyme kinetics, we show a practical application of numerical methods in biochemistry. Given the experimental data, we find a dependence of a reaction rate on a concentration of a substrate. In a preliminary section, we derive and explain The Michaelis-Menten kinetics from behaviour of biochemical reactions. In a first part, the problem is linearized and then solved by the least squares method. In a second part, we do not use linearization and solve the original problem by the Newton's method for systems of non-linear equations. We conclude our contribution with a comparison of both approaches and results. We also offer several problems for students to clarify and deepen their understanding of the linearization. Our solution is provided in a form of a thoroughly commented Matlab Code.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50302 - Education, special (to gifted persons, those with learning disabilities)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Aplimat 2018 : proceedings of the 17th conference on applied mathematics : February 6-8, 2018, Bratislava, Slovak Republic
ISBN
978-80-227-4765-3
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
9
Strana od-do
670-678
Název nakladatele
Slovak University of Technology
Místo vydání
Bratislava
Místo konání akce
Bratislava
Datum konání akce
6. 2. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—