Methodology of using the Adjoint solver optimization tool during flow in the intercooler filling line to minimize pressure drop
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F19%3A10244164" target="_blank" >RIV/61989100:27230/19:10244164 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.epj-conferences.org/articles/epjconf/pdf/2019/18/epjconf_efm18_02025.pdf" target="_blank" >https://www.epj-conferences.org/articles/epjconf/pdf/2019/18/epjconf_efm18_02025.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/epjconf/201921302025" target="_blank" >10.1051/epjconf/201921302025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Methodology of using the Adjoint solver optimization tool during flow in the intercooler filling line to minimize pressure drop
Popis výsledku v původním jazyce
The paper deals with numerical modelling of the flow in the intercooler filling line by Adjoint solver to minimize pressure loss. The ANSYS Fluent software was used for the calculations. The basic flow calculation was performed in the first phase. Then the mathematical model with Adjoint solver optimization tool was defined. The numerical calculation was unstable and did not lead to a convergent solution, because of creation of vortexes. The mathematical model was simplified in the second phase. To suppress instabilities and vortices a dynamic viscosity of coolant was adjusted. The pressure gradients between inlet and outlet for unmodified geometry and for modified geometry were evaluated. The final evaluations of pressure drop changes were implemented for modified geometry with original dynamic viscosity of the coolant.
Název v anglickém jazyce
Methodology of using the Adjoint solver optimization tool during flow in the intercooler filling line to minimize pressure drop
Popis výsledku anglicky
The paper deals with numerical modelling of the flow in the intercooler filling line by Adjoint solver to minimize pressure loss. The ANSYS Fluent software was used for the calculations. The basic flow calculation was performed in the first phase. Then the mathematical model with Adjoint solver optimization tool was defined. The numerical calculation was unstable and did not lead to a convergent solution, because of creation of vortexes. The mathematical model was simplified in the second phase. To suppress instabilities and vortices a dynamic viscosity of coolant was adjusted. The pressure gradients between inlet and outlet for unmodified geometry and for modified geometry were evaluated. The final evaluations of pressure drop changes were implemented for modified geometry with original dynamic viscosity of the coolant.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EPJ Web of Conferences. Volume 213
ISBN
—
ISSN
2100-014X
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
EDP Sciences
Místo vydání
Paříž
Místo konání akce
Praha
Datum konání akce
13. 11. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000504642200026