Classification of timber load on trucks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F20%3A10245761" target="_blank" >RIV/61989100:27230/20:10245761 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.astesj.com/publications/ASTESJ_050284.pdf" target="_blank" >http://www.astesj.com/publications/ASTESJ_050284.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.25046/aj050284" target="_blank" >10.25046/aj050284</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of timber load on trucks
Popis výsledku v původním jazyce
All trucks heading into the paper mill MONDI, Slovakia, have to pass an automatic security check. It controls if storage of its wood load meets all standards of safety. Each truck is scanned by a group of 2D scanners. After that the inspection of timber load is done by a software with use of the data gained by these scanners. The security software is universal for all kinds of storage of timber loads. This article is dedicated to deal with a problem of classification a kind of wood storage on a semi-trailer. The classification is solved by training a convolutional neural network on datasets with recorded trucks of both kinds to learn patterns distinguishing them. The image classification is done with use of images recorded by a set of cameras. By determining a type of storage, it is possible to execute the safety check for a specific type of wood load with better result than the universal check. (C) 2020 ASTES Publishers. All rights reserved.
Název v anglickém jazyce
Classification of timber load on trucks
Popis výsledku anglicky
All trucks heading into the paper mill MONDI, Slovakia, have to pass an automatic security check. It controls if storage of its wood load meets all standards of safety. Each truck is scanned by a group of 2D scanners. After that the inspection of timber load is done by a software with use of the data gained by these scanners. The security software is universal for all kinds of storage of timber loads. This article is dedicated to deal with a problem of classification a kind of wood storage on a semi-trailer. The classification is solved by training a convolutional neural network on datasets with recorded trucks of both kinds to learn patterns distinguishing them. The image classification is done with use of images recorded by a set of cameras. By determining a type of storage, it is possible to execute the safety check for a specific type of wood load with better result than the universal check. (C) 2020 ASTES Publishers. All rights reserved.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Science, Technology and Engineering Systems
ISSN
2415-6698
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
683-687
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85084860033