Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sensitivity Analysis of Key Formulations of Topology Optimization on an Example of Cantilever Bending Beam

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F21%3A10247440" target="_blank" >RIV/61989100:27230/21:10247440 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61388998:_____/21:00542249

  • Výsledek na webu

    <a href="https://www.mdpi.com/2073-8994/13/4/712" target="_blank" >https://www.mdpi.com/2073-8994/13/4/712</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/sym13040712" target="_blank" >10.3390/sym13040712</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sensitivity Analysis of Key Formulations of Topology Optimization on an Example of Cantilever Bending Beam

  • Popis výsledku v původním jazyce

    Topology optimization is a modern method for optimizing the material distribution in a given space, automatically searching for the ideal design of the product. The method aims to maximize the design performance of the system regarding given conditions. In engineering practice, a given space is first described using the finite element method and, subsequently, density-based method with solid isotropic material with penalty. Then, the final shape is found using a gradient-based method, such as the optimality criteria algorithm. However, obtaining the ideal shape is highly dependent on the correct setting of numerical parameters. This paper focuses on the sensitivity analysis of key formulations of topology optimization using the implementation of mathematical programming techniques in MATLAB software. For the purposes of the study, sensitivity analysis of a simple spatial task-cantilever bending-is performed. This paper aims to present the formulations of the optimization problem-in this case, minimization of compliance. It should be noted that this paper does not present any new mathematical formulas but rather provides an introduction into the mathematical theory (including filtering methods and calculating large-size problems using the symmetry of matrices) as well as a step-by step guideline for the minimization of compliance within the density-based topology optimization and search for an optimal shape. The results can be used for complex commercial applications produced by traditional manufacturing processes or by additive manufacturing methods.

  • Název v anglickém jazyce

    Sensitivity Analysis of Key Formulations of Topology Optimization on an Example of Cantilever Bending Beam

  • Popis výsledku anglicky

    Topology optimization is a modern method for optimizing the material distribution in a given space, automatically searching for the ideal design of the product. The method aims to maximize the design performance of the system regarding given conditions. In engineering practice, a given space is first described using the finite element method and, subsequently, density-based method with solid isotropic material with penalty. Then, the final shape is found using a gradient-based method, such as the optimality criteria algorithm. However, obtaining the ideal shape is highly dependent on the correct setting of numerical parameters. This paper focuses on the sensitivity analysis of key formulations of topology optimization using the implementation of mathematical programming techniques in MATLAB software. For the purposes of the study, sensitivity analysis of a simple spatial task-cantilever bending-is performed. This paper aims to present the formulations of the optimization problem-in this case, minimization of compliance. It should be noted that this paper does not present any new mathematical formulas but rather provides an introduction into the mathematical theory (including filtering methods and calculating large-size problems using the symmetry of matrices) as well as a step-by step guideline for the minimization of compliance within the density-based topology optimization and search for an optimal shape. The results can be used for complex commercial applications produced by traditional manufacturing processes or by additive manufacturing methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Symmetry

  • ISSN

    2073-8994

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    25

  • Strana od-do

    1-25

  • Kód UT WoS článku

    000643656900001

  • EID výsledku v databázi Scopus