Sensitivity Analysis of Key Formulations of Topology Optimization on an Example of Cantilever Bending Beam
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F21%3A10247440" target="_blank" >RIV/61989100:27230/21:10247440 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388998:_____/21:00542249
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/13/4/712" target="_blank" >https://www.mdpi.com/2073-8994/13/4/712</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym13040712" target="_blank" >10.3390/sym13040712</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sensitivity Analysis of Key Formulations of Topology Optimization on an Example of Cantilever Bending Beam
Popis výsledku v původním jazyce
Topology optimization is a modern method for optimizing the material distribution in a given space, automatically searching for the ideal design of the product. The method aims to maximize the design performance of the system regarding given conditions. In engineering practice, a given space is first described using the finite element method and, subsequently, density-based method with solid isotropic material with penalty. Then, the final shape is found using a gradient-based method, such as the optimality criteria algorithm. However, obtaining the ideal shape is highly dependent on the correct setting of numerical parameters. This paper focuses on the sensitivity analysis of key formulations of topology optimization using the implementation of mathematical programming techniques in MATLAB software. For the purposes of the study, sensitivity analysis of a simple spatial task-cantilever bending-is performed. This paper aims to present the formulations of the optimization problem-in this case, minimization of compliance. It should be noted that this paper does not present any new mathematical formulas but rather provides an introduction into the mathematical theory (including filtering methods and calculating large-size problems using the symmetry of matrices) as well as a step-by step guideline for the minimization of compliance within the density-based topology optimization and search for an optimal shape. The results can be used for complex commercial applications produced by traditional manufacturing processes or by additive manufacturing methods.
Název v anglickém jazyce
Sensitivity Analysis of Key Formulations of Topology Optimization on an Example of Cantilever Bending Beam
Popis výsledku anglicky
Topology optimization is a modern method for optimizing the material distribution in a given space, automatically searching for the ideal design of the product. The method aims to maximize the design performance of the system regarding given conditions. In engineering practice, a given space is first described using the finite element method and, subsequently, density-based method with solid isotropic material with penalty. Then, the final shape is found using a gradient-based method, such as the optimality criteria algorithm. However, obtaining the ideal shape is highly dependent on the correct setting of numerical parameters. This paper focuses on the sensitivity analysis of key formulations of topology optimization using the implementation of mathematical programming techniques in MATLAB software. For the purposes of the study, sensitivity analysis of a simple spatial task-cantilever bending-is performed. This paper aims to present the formulations of the optimization problem-in this case, minimization of compliance. It should be noted that this paper does not present any new mathematical formulas but rather provides an introduction into the mathematical theory (including filtering methods and calculating large-size problems using the symmetry of matrices) as well as a step-by step guideline for the minimization of compliance within the density-based topology optimization and search for an optimal shape. The results can be used for complex commercial applications produced by traditional manufacturing processes or by additive manufacturing methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
000643656900001
EID výsledku v databázi Scopus
—