Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Comparative Analysis of Machine Learning Models in Prediction of Mortar Compressive Strength

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250061" target="_blank" >RIV/61989100:27230/22:10250061 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000831902300001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000831902300001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pr10071387" target="_blank" >10.3390/pr10071387</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Comparative Analysis of Machine Learning Models in Prediction of Mortar Compressive Strength

  • Popis výsledku v původním jazyce

    Predicting the mechanical properties of cement-based mortars is essential in understanding the life and functioning of structures. Machine learning (ML) algorithms in this regard can be especially useful in prediction scenarios. In this paper, a comprehensive comparison of nine ML algorithms, i.e., linear regression (LR), random forest regression (RFR), support vector regression (SVR), AdaBoost regression (ABR), multi-layer perceptron (MLP), gradient boosting regression (GBR), decision tree regression (DT), hist gradient boosting regression (hGBR) and XGBoost regression (XGB), is carried out. A multi-attribute decision making method called TOPSIS (technique for order of preference by similarity to ideal solution) is used to select the best ML metamodel. A large dataset on cement-based mortars consisting of 424 sample points is used. The compressive strength of cement-based mortars is predicted based on six input parameters, i.e., the age of specimen (AS), the cement grade (CG), the metakaolin-to-total-binder ratio (MK/B), the water-to-binder ratio (W/B), the superplasticizer-to-binder ratio (SP) and the binder-to-sand ratio (B/S). XGBoost regression is found to be the best ML metamodel while simple metamodels like linear regression (LR) are found to be insufficient in handling the non-linearity in the process. This mapping of the compressive strength of mortars using ML techniques will be helpful for practitioners and researchers in identifying suitable mortar mixes.

  • Název v anglickém jazyce

    A Comparative Analysis of Machine Learning Models in Prediction of Mortar Compressive Strength

  • Popis výsledku anglicky

    Predicting the mechanical properties of cement-based mortars is essential in understanding the life and functioning of structures. Machine learning (ML) algorithms in this regard can be especially useful in prediction scenarios. In this paper, a comprehensive comparison of nine ML algorithms, i.e., linear regression (LR), random forest regression (RFR), support vector regression (SVR), AdaBoost regression (ABR), multi-layer perceptron (MLP), gradient boosting regression (GBR), decision tree regression (DT), hist gradient boosting regression (hGBR) and XGBoost regression (XGB), is carried out. A multi-attribute decision making method called TOPSIS (technique for order of preference by similarity to ideal solution) is used to select the best ML metamodel. A large dataset on cement-based mortars consisting of 424 sample points is used. The compressive strength of cement-based mortars is predicted based on six input parameters, i.e., the age of specimen (AS), the cement grade (CG), the metakaolin-to-total-binder ratio (MK/B), the water-to-binder ratio (W/B), the superplasticizer-to-binder ratio (SP) and the binder-to-sand ratio (B/S). XGBoost regression is found to be the best ML metamodel while simple metamodels like linear regression (LR) are found to be insufficient in handling the non-linearity in the process. This mapping of the compressive strength of mortars using ML techniques will be helpful for practitioners and researchers in identifying suitable mortar mixes.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Processes

  • ISSN

    2227-9717

  • e-ISSN

    2227-9717

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    16

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000831902300001

  • EID výsledku v databázi Scopus