Study on a Strong and Weak n-Connected Total Perfect k-Dominating set in Fuzzy Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250271" target="_blank" >RIV/61989100:27230/22:10250271 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000851751600001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000851751600001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10173178" target="_blank" >10.3390/math10173178</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Study on a Strong and Weak n-Connected Total Perfect k-Dominating set in Fuzzy Graphs
Popis výsledku v původním jazyce
In this paper, the concept of a strong n-Connected Total Perfect k-connected total perfect k-dominating set and a weak n-connected total perfect k-dominating set in fuzzy graphs is introduced. In the current work, the triple-connected total perfect dominating set is modified to an n-connected total perfect k-dominating set n(ctpkD)(G) and number gamma n(ctpkD)(G). New definitions are compared with old ones. Strong and weak n-connected total perfect k-dominating set and number of fuzzy graphs are obtained. The results of those fuzzy sets are discussed with the definitions of spanning fuzzy graphs, strong and weak arcs, dominating sets, perfect dominating sets, generalization of triple-connected total perfect dominating sets of fuzzy graphs, complete, connected, bipartite, cut node, tree, bridge and some other new notions of fuzzy graphs which are analyzed with a strong and weak n(ctpkD)(G) set of fuzzy graphs. The order and size of the strong and weak n(ctpkD)(G) fuzzy set are studied. Additionally, a few related theorems and statements are analyzed.
Název v anglickém jazyce
Study on a Strong and Weak n-Connected Total Perfect k-Dominating set in Fuzzy Graphs
Popis výsledku anglicky
In this paper, the concept of a strong n-Connected Total Perfect k-connected total perfect k-dominating set and a weak n-connected total perfect k-dominating set in fuzzy graphs is introduced. In the current work, the triple-connected total perfect dominating set is modified to an n-connected total perfect k-dominating set n(ctpkD)(G) and number gamma n(ctpkD)(G). New definitions are compared with old ones. Strong and weak n-connected total perfect k-dominating set and number of fuzzy graphs are obtained. The results of those fuzzy sets are discussed with the definitions of spanning fuzzy graphs, strong and weak arcs, dominating sets, perfect dominating sets, generalization of triple-connected total perfect dominating sets of fuzzy graphs, complete, connected, bipartite, cut node, tree, bridge and some other new notions of fuzzy graphs which are analyzed with a strong and weak n(ctpkD)(G) set of fuzzy graphs. The order and size of the strong and weak n(ctpkD)(G) fuzzy set are studied. Additionally, a few related theorems and statements are analyzed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
10
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
nestrankovano
Kód UT WoS článku
000851751600001
EID výsledku v databázi Scopus
—