MFO Tunned SVR Models for Analyzing Dimensional Characteristics of Cracks Developed on Steam Generator Tubes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250907" target="_blank" >RIV/61989100:27230/22:10250907 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000896013100001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000896013100001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app122312375" target="_blank" >10.3390/app122312375</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MFO Tunned SVR Models for Analyzing Dimensional Characteristics of Cracks Developed on Steam Generator Tubes
Popis výsledku v původním jazyce
Accurate prediction of material defects from the given images will avoid the major cause in industrial applications. In this work, a Support Vector Regression (SVR) model has been developed from the given Gray Level Co-occurrence Matrix (GLCM) features extracted from Magnetic Flux Leakage (MFL) images wherein the length, depth, and width of the images are considered response values from the given features data set, and a percentage of data has been considered for testing the SVR model. Four parameters like Kernel function, solver type, and validation scheme, and its value and % of testing data that affect the SVR model's performance are considered to select the best SVR model. Six different kernel functions, and three different kinds of solvers are considered as two validation schemes, and 10% to 30% of the testing data set of different levels of the above parameters. The prediction accuracy of the SVR model is considered by simultaneously minimizing prediction measures of both Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) and maximizing R-2 values. The Moth Flame Optimization (MFO) algorithm has been implemented to select the best SVR model and its four parameters based on the above conflict three prediction measures by converting multi-objectives into a single object using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The performance of the MFO algorithm is compared statistically with the Dragon Fly Optimization Algorithm (DFO) and Particle Swarm Optimization Algorithm (PSO).
Název v anglickém jazyce
MFO Tunned SVR Models for Analyzing Dimensional Characteristics of Cracks Developed on Steam Generator Tubes
Popis výsledku anglicky
Accurate prediction of material defects from the given images will avoid the major cause in industrial applications. In this work, a Support Vector Regression (SVR) model has been developed from the given Gray Level Co-occurrence Matrix (GLCM) features extracted from Magnetic Flux Leakage (MFL) images wherein the length, depth, and width of the images are considered response values from the given features data set, and a percentage of data has been considered for testing the SVR model. Four parameters like Kernel function, solver type, and validation scheme, and its value and % of testing data that affect the SVR model's performance are considered to select the best SVR model. Six different kernel functions, and three different kinds of solvers are considered as two validation schemes, and 10% to 30% of the testing data set of different levels of the above parameters. The prediction accuracy of the SVR model is considered by simultaneously minimizing prediction measures of both Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) and maximizing R-2 values. The Moth Flame Optimization (MFO) algorithm has been implemented to select the best SVR model and its four parameters based on the above conflict three prediction measures by converting multi-objectives into a single object using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The performance of the MFO algorithm is compared statistically with the Dragon Fly Optimization Algorithm (DFO) and Particle Swarm Optimization Algorithm (PSO).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
12
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
nestrankovano
Kód UT WoS článku
000896013100001
EID výsledku v databázi Scopus
—