Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MFO Tunned SVR Models for Analyzing Dimensional Characteristics of Cracks Developed on Steam Generator Tubes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250907" target="_blank" >RIV/61989100:27230/22:10250907 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000896013100001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000896013100001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app122312375" target="_blank" >10.3390/app122312375</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MFO Tunned SVR Models for Analyzing Dimensional Characteristics of Cracks Developed on Steam Generator Tubes

  • Popis výsledku v původním jazyce

    Accurate prediction of material defects from the given images will avoid the major cause in industrial applications. In this work, a Support Vector Regression (SVR) model has been developed from the given Gray Level Co-occurrence Matrix (GLCM) features extracted from Magnetic Flux Leakage (MFL) images wherein the length, depth, and width of the images are considered response values from the given features data set, and a percentage of data has been considered for testing the SVR model. Four parameters like Kernel function, solver type, and validation scheme, and its value and % of testing data that affect the SVR model&apos;s performance are considered to select the best SVR model. Six different kernel functions, and three different kinds of solvers are considered as two validation schemes, and 10% to 30% of the testing data set of different levels of the above parameters. The prediction accuracy of the SVR model is considered by simultaneously minimizing prediction measures of both Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) and maximizing R-2 values. The Moth Flame Optimization (MFO) algorithm has been implemented to select the best SVR model and its four parameters based on the above conflict three prediction measures by converting multi-objectives into a single object using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The performance of the MFO algorithm is compared statistically with the Dragon Fly Optimization Algorithm (DFO) and Particle Swarm Optimization Algorithm (PSO).

  • Název v anglickém jazyce

    MFO Tunned SVR Models for Analyzing Dimensional Characteristics of Cracks Developed on Steam Generator Tubes

  • Popis výsledku anglicky

    Accurate prediction of material defects from the given images will avoid the major cause in industrial applications. In this work, a Support Vector Regression (SVR) model has been developed from the given Gray Level Co-occurrence Matrix (GLCM) features extracted from Magnetic Flux Leakage (MFL) images wherein the length, depth, and width of the images are considered response values from the given features data set, and a percentage of data has been considered for testing the SVR model. Four parameters like Kernel function, solver type, and validation scheme, and its value and % of testing data that affect the SVR model&apos;s performance are considered to select the best SVR model. Six different kernel functions, and three different kinds of solvers are considered as two validation schemes, and 10% to 30% of the testing data set of different levels of the above parameters. The prediction accuracy of the SVR model is considered by simultaneously minimizing prediction measures of both Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) and maximizing R-2 values. The Moth Flame Optimization (MFO) algorithm has been implemented to select the best SVR model and its four parameters based on the above conflict three prediction measures by converting multi-objectives into a single object using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method. The performance of the MFO algorithm is compared statistically with the Dragon Fly Optimization Algorithm (DFO) and Particle Swarm Optimization Algorithm (PSO).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    25

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000896013100001

  • EID výsledku v databázi Scopus