Artificial Intelligence for Media Ecological Integration and Knowledge Management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252521" target="_blank" >RIV/61989100:27230/23:10252521 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000997894700001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000997894700001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/systems11050222" target="_blank" >10.3390/systems11050222</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Intelligence for Media Ecological Integration and Knowledge Management
Popis výsledku v původním jazyce
Information Technology's development increases day by day, making life easier in terms of work and progress. In these developments, knowledge management is becoming mandatory in all the developing sectors. However, the conventional model for growth analysis in organizations is tedious as data are maintained in ledgers, making the process time consuming. Media Ecology, a new trending technology, overcomes this drawback by being integrated with artificial intelligence. Various sectors implement this integrated technology. The marketing strategy of Huawei Technologies Co. Ltd. is analyzed in this research to examine the advantages of Media Ecology Technology in integration with artificial intelligence and a Knowledge Management Model. This combined model supports sensor technology by considering each medium, the data processing zone, and user location as nodes. A Q-R hybrid simulation methodology is implemented to analyze the data collected through Media Ecology. The proposed method is compared with the inventory model, and the results show that the proposed system provides increased profit to the organization. Paying complete attention to Artificial intelligence without the help of lightweight deep learning models is impossible. Thus, lightweight deep models have been introduced in most situations, such as healthcare management, maintenance systems, and controlling a few IoT devices. With the support of high-power consumption as computational energy, it adapts to lightweight devices such as mobile phones. One common expectation from the deep learning concept is to develop an optimal structure in case time management.
Název v anglickém jazyce
Artificial Intelligence for Media Ecological Integration and Knowledge Management
Popis výsledku anglicky
Information Technology's development increases day by day, making life easier in terms of work and progress. In these developments, knowledge management is becoming mandatory in all the developing sectors. However, the conventional model for growth analysis in organizations is tedious as data are maintained in ledgers, making the process time consuming. Media Ecology, a new trending technology, overcomes this drawback by being integrated with artificial intelligence. Various sectors implement this integrated technology. The marketing strategy of Huawei Technologies Co. Ltd. is analyzed in this research to examine the advantages of Media Ecology Technology in integration with artificial intelligence and a Knowledge Management Model. This combined model supports sensor technology by considering each medium, the data processing zone, and user location as nodes. A Q-R hybrid simulation methodology is implemented to analyze the data collected through Media Ecology. The proposed method is compared with the inventory model, and the results show that the proposed system provides increased profit to the organization. Paying complete attention to Artificial intelligence without the help of lightweight deep learning models is impossible. Thus, lightweight deep models have been introduced in most situations, such as healthcare management, maintenance systems, and controlling a few IoT devices. With the support of high-power consumption as computational energy, it adapts to lightweight devices such as mobile phones. One common expectation from the deep learning concept is to develop an optimal structure in case time management.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Systems
ISSN
2079-8954
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000997894700001
EID výsledku v databázi Scopus
2-s2.0-85160028133