Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Artificial Intelligence for Media Ecological Integration and Knowledge Management

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252521" target="_blank" >RIV/61989100:27230/23:10252521 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000997894700001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000997894700001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/systems11050222" target="_blank" >10.3390/systems11050222</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Artificial Intelligence for Media Ecological Integration and Knowledge Management

  • Popis výsledku v původním jazyce

    Information Technology&apos;s development increases day by day, making life easier in terms of work and progress. In these developments, knowledge management is becoming mandatory in all the developing sectors. However, the conventional model for growth analysis in organizations is tedious as data are maintained in ledgers, making the process time consuming. Media Ecology, a new trending technology, overcomes this drawback by being integrated with artificial intelligence. Various sectors implement this integrated technology. The marketing strategy of Huawei Technologies Co. Ltd. is analyzed in this research to examine the advantages of Media Ecology Technology in integration with artificial intelligence and a Knowledge Management Model. This combined model supports sensor technology by considering each medium, the data processing zone, and user location as nodes. A Q-R hybrid simulation methodology is implemented to analyze the data collected through Media Ecology. The proposed method is compared with the inventory model, and the results show that the proposed system provides increased profit to the organization. Paying complete attention to Artificial intelligence without the help of lightweight deep learning models is impossible. Thus, lightweight deep models have been introduced in most situations, such as healthcare management, maintenance systems, and controlling a few IoT devices. With the support of high-power consumption as computational energy, it adapts to lightweight devices such as mobile phones. One common expectation from the deep learning concept is to develop an optimal structure in case time management.

  • Název v anglickém jazyce

    Artificial Intelligence for Media Ecological Integration and Knowledge Management

  • Popis výsledku anglicky

    Information Technology&apos;s development increases day by day, making life easier in terms of work and progress. In these developments, knowledge management is becoming mandatory in all the developing sectors. However, the conventional model for growth analysis in organizations is tedious as data are maintained in ledgers, making the process time consuming. Media Ecology, a new trending technology, overcomes this drawback by being integrated with artificial intelligence. Various sectors implement this integrated technology. The marketing strategy of Huawei Technologies Co. Ltd. is analyzed in this research to examine the advantages of Media Ecology Technology in integration with artificial intelligence and a Knowledge Management Model. This combined model supports sensor technology by considering each medium, the data processing zone, and user location as nodes. A Q-R hybrid simulation methodology is implemented to analyze the data collected through Media Ecology. The proposed method is compared with the inventory model, and the results show that the proposed system provides increased profit to the organization. Paying complete attention to Artificial intelligence without the help of lightweight deep learning models is impossible. Thus, lightweight deep models have been introduced in most situations, such as healthcare management, maintenance systems, and controlling a few IoT devices. With the support of high-power consumption as computational energy, it adapts to lightweight devices such as mobile phones. One common expectation from the deep learning concept is to develop an optimal structure in case time management.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Systems

  • ISSN

    2079-8954

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000997894700001

  • EID výsledku v databázi Scopus

    2-s2.0-85160028133