Multi-objective liver cancer algorithm: A novel algorithm for solving engineering design problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10254898" target="_blank" >RIV/61989100:27230/24:10254898 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001215756400001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001215756400001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e26665" target="_blank" >10.1016/j.heliyon.2024.e26665</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-objective liver cancer algorithm: A novel algorithm for solving engineering design problems
Popis výsledku v původním jazyce
This research introduces the Multi -Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi -objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition -Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non -dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi -objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real -world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two -bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non -dominated sorting grey wolf optimizer (NSGWO), multiobjective multi -verse optimization (MOMVO), non -dominated sorting genetic algorithm (NSGA-II), decomposition -based multiobjective evolutionary algorithm (MOEA/ D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.
Název v anglickém jazyce
Multi-objective liver cancer algorithm: A novel algorithm for solving engineering design problems
Popis výsledku anglicky
This research introduces the Multi -Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi -objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition -Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non -dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi -objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real -world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two -bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non -dominated sorting grey wolf optimizer (NSGWO), multiobjective multi -verse optimization (MOMVO), non -dominated sorting genetic algorithm (NSGA-II), decomposition -based multiobjective evolutionary algorithm (MOEA/ D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
10
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
33
Strana od-do
"nestrákováno"
Kód UT WoS článku
001215756400001
EID výsledku v databázi Scopus
—