Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-objective liver cancer algorithm: A novel algorithm for solving engineering design problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10254898" target="_blank" >RIV/61989100:27230/24:10254898 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001215756400001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001215756400001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2024.e26665" target="_blank" >10.1016/j.heliyon.2024.e26665</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-objective liver cancer algorithm: A novel algorithm for solving engineering design problems

  • Popis výsledku v původním jazyce

    This research introduces the Multi -Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi -objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition -Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non -dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi -objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real -world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two -bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non -dominated sorting grey wolf optimizer (NSGWO), multiobjective multi -verse optimization (MOMVO), non -dominated sorting genetic algorithm (NSGA-II), decomposition -based multiobjective evolutionary algorithm (MOEA/ D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.

  • Název v anglickém jazyce

    Multi-objective liver cancer algorithm: A novel algorithm for solving engineering design problems

  • Popis výsledku anglicky

    This research introduces the Multi -Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi -objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition -Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non -dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi -objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real -world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two -bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non -dominated sorting grey wolf optimizer (NSGWO), multiobjective multi -verse optimization (MOMVO), non -dominated sorting genetic algorithm (NSGA-II), decomposition -based multiobjective evolutionary algorithm (MOEA/ D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

    2405-8440

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    33

  • Strana od-do

    "nestrákováno"

  • Kód UT WoS článku

    001215756400001

  • EID výsledku v databázi Scopus