Analysis of Caputo Fractional-Order Co-Infection COVID-19 and Influenza SEIR Epidemiology by Laplace Adomian Decomposition Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255129" target="_blank" >RIV/61989100:27230/24:10255129 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001256611200001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001256611200001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math12121876" target="_blank" >10.3390/math12121876</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Caputo Fractional-Order Co-Infection COVID-19 and Influenza SEIR Epidemiology by Laplace Adomian Decomposition Method
Popis výsledku v původním jazyce
Around the world, the people are simultaneously susceptible to or infected with several infections. This work aims at the analysis of the dynamics of transmission of two deadly viruses, COVID-19 and Influenza, using a co-infection epidemiological model by applying the Caputo fractional derivative. Fractional differential equations are currently used worldwide to model physical and biological phenomena. Our comprehension of complicated phenomena is improved when fractional-order derivatives are used to model systems with memory effects and long-range interactions. Mathematical depictions of infectious disease dynamics and dissemination across communities are provided by epidemiological models, which are essential resources for understanding and controlling infectious diseases. These models support informed decision making to prevent outbreaks, evaluate intervention measures, and help researchers and policymakers understand how diseases spread. A subclass of epidemiological models called co-infection models focuses on studying the dynamics of several infectious illnesses that occur in the same population at the same time. They are especially useful in situations where people are simultaneously susceptible to or infected with several infections. Co-infection models provide information on the development of effective control techniques, the progression of disease, and the interactions between several pathogens. The qualitative study via stability analysis is discussed at equilibrium, the reproduction number R0 is computed, and the results are simulated using the Laplace Adomian Decomposition Method (LADM) for Fractional Differential Equations. We employ MATLAB R2023a for graphical presentations and numerical simulations.
Název v anglickém jazyce
Analysis of Caputo Fractional-Order Co-Infection COVID-19 and Influenza SEIR Epidemiology by Laplace Adomian Decomposition Method
Popis výsledku anglicky
Around the world, the people are simultaneously susceptible to or infected with several infections. This work aims at the analysis of the dynamics of transmission of two deadly viruses, COVID-19 and Influenza, using a co-infection epidemiological model by applying the Caputo fractional derivative. Fractional differential equations are currently used worldwide to model physical and biological phenomena. Our comprehension of complicated phenomena is improved when fractional-order derivatives are used to model systems with memory effects and long-range interactions. Mathematical depictions of infectious disease dynamics and dissemination across communities are provided by epidemiological models, which are essential resources for understanding and controlling infectious diseases. These models support informed decision making to prevent outbreaks, evaluate intervention measures, and help researchers and policymakers understand how diseases spread. A subclass of epidemiological models called co-infection models focuses on studying the dynamics of several infectious illnesses that occur in the same population at the same time. They are especially useful in situations where people are simultaneously susceptible to or infected with several infections. Co-infection models provide information on the development of effective control techniques, the progression of disease, and the interactions between several pathogens. The qualitative study via stability analysis is discussed at equilibrium, the reproduction number R0 is computed, and the results are simulated using the Laplace Adomian Decomposition Method (LADM) for Fractional Differential Equations. We employ MATLAB R2023a for graphical presentations and numerical simulations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
12
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
001256611200001
EID výsledku v databázi Scopus
—