Stochastic epidemic model for the dynamics of novel coronavirus transmission
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254846" target="_blank" >RIV/61989100:27740/24:10254846 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aimspress.com/article/doi/10.3934/math.2024608" target="_blank" >https://www.aimspress.com/article/doi/10.3934/math.2024608</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/math.2024608" target="_blank" >10.3934/math.2024608</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stochastic epidemic model for the dynamics of novel coronavirus transmission
Popis výsledku v původním jazyce
Stochastic differential equation models are important and provide more valuable outputs to examine the dynamics of SARS-CoV-2 virus transmission than traditional models. SARS-CoV-2 virus transmission is a contagious respiratory disease that produces asymptomatically and symptomatically infected individuals who are susceptible to multiple infections. This work was purposed to introduce an epidemiological model to represent the temporal dynamics of SARS-CoV-2 virus transmission through the use of stochastic differential equations. First, we formulated the model and derived the well-posedness to show that the proposed epidemiological problem is biologically and mathematically feasible. We then calculated the stochastic reproductive parameters for the proposed stochastic epidemiological model and analyzed the model extinction and persistence. Using the stochastic reproductive parameters, we derived the condition for disease extinction and persistence. Applying these conditions, we have performed large-scale numerical simulations to visualize the asymptotic analysis of the model and show the effectiveness of the results derived.
Název v anglickém jazyce
Stochastic epidemic model for the dynamics of novel coronavirus transmission
Popis výsledku anglicky
Stochastic differential equation models are important and provide more valuable outputs to examine the dynamics of SARS-CoV-2 virus transmission than traditional models. SARS-CoV-2 virus transmission is a contagious respiratory disease that produces asymptomatically and symptomatically infected individuals who are susceptible to multiple infections. This work was purposed to introduce an epidemiological model to represent the temporal dynamics of SARS-CoV-2 virus transmission through the use of stochastic differential equations. First, we formulated the model and derived the well-posedness to show that the proposed epidemiological problem is biologically and mathematically feasible. We then calculated the stochastic reproductive parameters for the proposed stochastic epidemiological model and analyzed the model extinction and persistence. Using the stochastic reproductive parameters, we derived the condition for disease extinction and persistence. Applying these conditions, we have performed large-scale numerical simulations to visualize the asymptotic analysis of the model and show the effectiveness of the results derived.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AIMS Mathematics
ISSN
2473-6988
e-ISSN
2473-6988
Svazek periodika
9
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
12433-12457
Kód UT WoS článku
001197002100005
EID výsledku v databázi Scopus
2-s2.0-85189150905