A proportioning based algorithm with rate of convergence for bound constrained quadratic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F03%3A00009188" target="_blank" >RIV/61989100:27240/03:00009188 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A proportioning based algorithm with rate of convergence for bound constrained quadratic
Popis výsledku v původním jazyce
The proportioning algorithm with projections turned out to be an efficient algorithm for iterative solution of large quadratic programming problems with simple bounds and box constraints. Important features of this active set based algorithm are the adaptive precision control in the solution of auxiliary linear problems and capability to add or remove many indices from the active set in one step. In this paper a modification of the algorithm is presented that enables to find its rate of convergence in terms of the spectral condition number of the Hessian matrix and avoid any backtracking. The modified algorithm is shown to preserve the finite termination property of the original algorithm for problems that are not dual degenerate.
Název v anglickém jazyce
A proportioning based algorithm with rate of convergence for bound constrained quadratic
Popis výsledku anglicky
The proportioning algorithm with projections turned out to be an efficient algorithm for iterative solution of large quadratic programming problems with simple bounds and box constraints. Important features of this active set based algorithm are the adaptive precision control in the solution of auxiliary linear problems and capability to add or remove many indices from the active set in one step. In this paper a modification of the algorithm is presented that enables to find its rate of convergence in terms of the spectral condition number of the Hessian matrix and avoid any backtracking. The modified algorithm is shown to preserve the finite termination property of the original algorithm for problems that are not dual degenerate.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
2-4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
293-302
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—