Scalability and FETI based algorithm for large discretized variational inequalities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F03%3A00009190" target="_blank" >RIV/61989100:27240/03:00009190 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scalability and FETI based algorithm for large discretized variational inequalities
Popis výsledku v původním jazyce
The point of this paper is to review recent theoretical and experimental results related to scalability of the FETI based domain decomposition algorithm that was proposed recently by Dost'al, Friedlander, Santos and Gomes for numerical solution of discretized variational inequalities. After briefly describing the basic algorithm with a "natural coarse grid" and its implementation, we review theoretical results that indicate a kind of optimality of the algorithm, namely that the number of iterations that are necessary to complete some parts of the algorithm is bounded independently of the discretization parameter. Then we give some results of numerical experiments with parallel solution of a model problem discretized by up to more than eight millions of nodal variables to give an evidence of both numerical and parallel scalability of the algorithm presented.
Název v anglickém jazyce
Scalability and FETI based algorithm for large discretized variational inequalities
Popis výsledku anglicky
The point of this paper is to review recent theoretical and experimental results related to scalability of the FETI based domain decomposition algorithm that was proposed recently by Dost'al, Friedlander, Santos and Gomes for numerical solution of discretized variational inequalities. After briefly describing the basic algorithm with a "natural coarse grid" and its implementation, we review theoretical results that indicate a kind of optimality of the algorithm, namely that the number of iterations that are necessary to complete some parts of the algorithm is bounded independently of the discretization parameter. Then we give some results of numerical experiments with parallel solution of a model problem discretized by up to more than eight millions of nodal variables to give an evidence of both numerical and parallel scalability of the algorithm presented.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics and Computers in Simulation
ISSN
0378-4754
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
3-6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
347-357
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—