Scalable TFETI based algorithm with adaptive augmentation for contact problems with variationally consistent discretization of contact conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242644" target="_blank" >RIV/61989100:27240/19:10242644 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/19:10242644
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0168874X18306978?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168874X18306978?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.finel.2019.01.002" target="_blank" >10.1016/j.finel.2019.01.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scalable TFETI based algorithm with adaptive augmentation for contact problems with variationally consistent discretization of contact conditions
Popis výsledku v původním jazyce
A variationally consistent approximation of contact conditions by means of biorthogonal mortars was introduced by Wohlmuth as a powerful theoretically supported tool for the discretization of contact problems. This approach is especially useful when a potential contact interface is large and curved or when nonmatching grids are applied, but its effective implementation into FETI based algorithms is not straightforward due to the ill conditioning of related inequality constraints. In this paper we review the mortar discretization and theoretical results on scalability of the FETI based algorithm and show that the recently proposed adaptive augmentation can overcome the difficulties caused by the ill-conditioning of constraints. We demonstrate the (weak) numerical scalability by numerical experiments and present the results for a difficult real world problem discretized by mortars that show the power of the new algorithm - the number of iterations required to the solution of this problem discretized by mortars is just one third of that required by the original algorithm for the same problem discretized by node-to-node constraints. (C) 2019 Elsevier B.V.
Název v anglickém jazyce
Scalable TFETI based algorithm with adaptive augmentation for contact problems with variationally consistent discretization of contact conditions
Popis výsledku anglicky
A variationally consistent approximation of contact conditions by means of biorthogonal mortars was introduced by Wohlmuth as a powerful theoretically supported tool for the discretization of contact problems. This approach is especially useful when a potential contact interface is large and curved or when nonmatching grids are applied, but its effective implementation into FETI based algorithms is not straightforward due to the ill conditioning of related inequality constraints. In this paper we review the mortar discretization and theoretical results on scalability of the FETI based algorithm and show that the recently proposed adaptive augmentation can overcome the difficulties caused by the ill-conditioning of constraints. We demonstrate the (weak) numerical scalability by numerical experiments and present the results for a difficult real world problem discretized by mortars that show the power of the new algorithm - the number of iterations required to the solution of this problem discretized by mortars is just one third of that required by the original algorithm for the same problem discretized by node-to-node constraints. (C) 2019 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Finite Elements in Analysis and Design
ISSN
0168-874X
e-ISSN
—
Svazek periodika
156
Číslo periodika v rámci svazku
APR 2019
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
34-43
Kód UT WoS článku
000457631000004
EID výsledku v databázi Scopus
2-s2.0-85060522450