A Scalable FETI--DP Algorithm with Non-penetration Mortar Conditions on the Contact Interface
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A00021004" target="_blank" >RIV/61989100:27240/09:00021004 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Scalable FETI--DP Algorithm with Non-penetration Mortar Conditions on the Contact Interface
Popis výsledku v původním jazyce
By combining FETI algorithms of dual-primal type with recent results for bound constrained quadratic programming problems, we develop an optimal algorithm for the numerical solution of coercive variational inequalities. The model problem is discretized using non-penetration conditions of mortar type across the potential contact interface, and a FETIDP algorithm is formulated. The resulting quadratic programming problem with bound constraints is solved by a scalable algorithm with a known rate of convergence given in terms of the spectral condition number of the quadratic problem. Numerical experiments for non-matching meshes across the contact interface confirm the theoretical scalability of the algorithm.
Název v anglickém jazyce
A Scalable FETI--DP Algorithm with Non-penetration Mortar Conditions on the Contact Interface
Popis výsledku anglicky
By combining FETI algorithms of dual-primal type with recent results for bound constrained quadratic programming problems, we develop an optimal algorithm for the numerical solution of coercive variational inequalities. The model problem is discretized using non-penetration conditions of mortar type across the potential contact interface, and a FETIDP algorithm is formulated. The resulting quadratic programming problem with bound constraints is solved by a scalable algorithm with a known rate of convergence given in terms of the spectral condition number of the quadratic problem. Numerical experiments for non-matching meshes across the contact interface confirm the theoretical scalability of the algorithm.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
231
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000268515000008
EID výsledku v databázi Scopus
—