Scalable FETI with Optimal Dual Penalty for a Variational Inequality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F04%3A00010922" target="_blank" >RIV/61989100:27240/04:00010922 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scalable FETI with Optimal Dual Penalty for a Variational Inequality
Popis výsledku v původním jazyce
The FETI method with the natural coarse grid is combined with the penalty method to develop an efficient solver for elliptic variational inequalities. A proof is given that a prescribed bound on the norm of feasibility of solution may be achieved with avalue of the penalty parameter that does not depend on the discretization parameter and that an approximate solution with the prescribed bound on violation of the Karush-Kuhn-Tucker conditions may be found in a number of steps that does not depend on thediscretization parameter. Results of numerical experiments with parallel solution of a model problem discretized by up to more than eight million of nodal variables are in agreement with the theory and demonstrate numerically both optimality of the penalty and scalability of the algorithm presented.
Název v anglickém jazyce
Scalable FETI with Optimal Dual Penalty for a Variational Inequality
Popis výsledku anglicky
The FETI method with the natural coarse grid is combined with the penalty method to develop an efficient solver for elliptic variational inequalities. A proof is given that a prescribed bound on the norm of feasibility of solution may be achieved with avalue of the penalty parameter that does not depend on the discretization parameter and that an approximate solution with the prescribed bound on violation of the Karush-Kuhn-Tucker conditions may be found in a number of steps that does not depend on thediscretization parameter. Results of numerical experiments with parallel solution of a model problem discretized by up to more than eight million of nodal variables are in agreement with the theory and demonstrate numerically both optimality of the penalty and scalability of the algorithm presented.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA101%2F04%2F1145" target="_blank" >GA101/04/1145: Vývoj a implementace škálovatelných numerických metod pro řešení fyzikálně realistických modelů kontaktních úloh se třením ve 2 a 3D</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Linear Algebra with Applications
ISSN
1070-5325
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
455-472
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—