Semicoercive Contact Problems with Large Displacements by FETI Domain Decomposion Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F04%3A00010929" target="_blank" >RIV/61989100:27240/04:00010929 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semicoercive Contact Problems with Large Displacements by FETI Domain Decomposion Method
Popis výsledku v původním jazyce
One of new methods which can successfully be applied to solution to contact problems is the FETI method which is based on decomposition of a spatial domain into a set of totally disconnected non-overlapping subdomains with Lagrange multipliers enforcingcompatibility at the interfaces. It has turned out to be one of the most successful algorithms for parallel solution of problems described by elliptic partial differential equations. The idea that every individual subdomain interacts with its neighboursin terms of the Lagrangian multipliers can naturally be applied to contact problems. In addition in static cases, this approach renders possible the solution to the semicoercive problems, i.e. the structures with some floating subdomains. The algorithmsstemming from the FETI method were tested in the following numerical experiments:(a) Comparison with the analytical solution to a classic Hertzian problem; (b) Comparison with the analytical solution to contact of a cylinder in a cylindri
Název v anglickém jazyce
Semicoercive Contact Problems with Large Displacements by FETI Domain Decomposion Method
Popis výsledku anglicky
One of new methods which can successfully be applied to solution to contact problems is the FETI method which is based on decomposition of a spatial domain into a set of totally disconnected non-overlapping subdomains with Lagrange multipliers enforcingcompatibility at the interfaces. It has turned out to be one of the most successful algorithms for parallel solution of problems described by elliptic partial differential equations. The idea that every individual subdomain interacts with its neighboursin terms of the Lagrangian multipliers can naturally be applied to contact problems. In addition in static cases, this approach renders possible the solution to the semicoercive problems, i.e. the structures with some floating subdomains. The algorithmsstemming from the FETI method were tested in the following numerical experiments:(a) Comparison with the analytical solution to a classic Hertzian problem; (b) Comparison with the analytical solution to contact of a cylinder in a cylindri
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA101%2F02%2F0072" target="_blank" >GA101/02/0072: Analýza a řešení vybraných nelineárních úloh pružnosti metodou konečných prvků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Jyvaskyla
Název nakladatele resp. objednatele
University of Jyvaskyla
Verze
5
Identifikační číslo nosiče
—