Searching Protein 3-D Structures for Optimal Structure Alignment Using Intelligent Algorithms and Data Structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86075394" target="_blank" >RIV/61989100:27240/10:86075394 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Searching Protein 3-D Structures for Optimal Structure Alignment Using Intelligent Algorithms and Data Structures
Popis výsledku v původním jazyce
In this paper, we present a novel algorithm for measuring protein similarity based on their 3-D structure (protein tertiary structure). The algorithm used a suffix tree for discovering common parts of main chains of all proteins appearing in the currentresearch collaboratory for structural bioinformatics protein data bank (PDB). By identifying these common parts, we build a vector model and use some classical information retrieval (IR) algorithms based on the vector model to measure the similarity between proteins-all to all protein similarity. For the calculation of protein similarity, we use term frequency x inverse document frequency (tf x idf) term weighing schema and cosine similarity measure. The goal of this paper is to introduce new protein similarity metric based on suffix trees and IR methods. Whole current PDB database was used to demonstrate very good time complexity of the algorithm as well as high precision.
Název v anglickém jazyce
Searching Protein 3-D Structures for Optimal Structure Alignment Using Intelligent Algorithms and Data Structures
Popis výsledku anglicky
In this paper, we present a novel algorithm for measuring protein similarity based on their 3-D structure (protein tertiary structure). The algorithm used a suffix tree for discovering common parts of main chains of all proteins appearing in the currentresearch collaboratory for structural bioinformatics protein data bank (PDB). By identifying these common parts, we build a vector model and use some classical information retrieval (IR) algorithms based on the vector model to measure the similarity between proteins-all to all protein similarity. For the calculation of protein similarity, we use term frequency x inverse document frequency (tf x idf) term weighing schema and cosine similarity measure. The goal of this paper is to introduce new protein similarity metric based on suffix trees and IR methods. Whole current PDB database was used to demonstrate very good time complexity of the algorithm as well as high precision.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE
ISSN
1089-7771
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000283982200008
EID výsledku v databázi Scopus
—