Superrelaxation and the rate of convergence in minimizing quadratic functions subject to bound constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A00021399" target="_blank" >RIV/61989100:27240/11:00021399 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/11:86084112
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10589-009-9237-6" target="_blank" >http://dx.doi.org/10.1007/s10589-009-9237-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10589-009-9237-6" target="_blank" >10.1007/s10589-009-9237-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Superrelaxation and the rate of convergence in minimizing quadratic functions subject to bound constraints
Popis výsledku v původním jazyce
The paper resolves the problem concerning the rate of convergence of the working set based MPRGP (modified proportioning with reduced gradient projection) algorithm with a long steplength of the reduced projected gradient step. The main results of this paper are the formula for the R-linear rate of convergence of MPRGP in terms of the spectral condition number of the Hessian matrix and the proof of the finite termination property for the problems whose solution does not satisfy the strict complementarity condition. The bound on the R-linear rate of convergence of the projected gradient is also included. For shorter steplengths these results were proved earlier by Dostal and Schoberl. The efficiency of the longer steplength is illustrated by numerical experiments. The result is an important ingredient in developing scalable algorithms for numerical solution of elliptic variational inequalities and substantiates the choice of parameters that turned out to be effective in numerical experi
Název v anglickém jazyce
Superrelaxation and the rate of convergence in minimizing quadratic functions subject to bound constraints
Popis výsledku anglicky
The paper resolves the problem concerning the rate of convergence of the working set based MPRGP (modified proportioning with reduced gradient projection) algorithm with a long steplength of the reduced projected gradient step. The main results of this paper are the formula for the R-linear rate of convergence of MPRGP in terms of the spectral condition number of the Hessian matrix and the proof of the finite termination property for the problems whose solution does not satisfy the strict complementarity condition. The bound on the R-linear rate of convergence of the projected gradient is also included. For shorter steplengths these results were proved earlier by Dostal and Schoberl. The efficiency of the longer steplength is illustrated by numerical experiments. The result is an important ingredient in developing scalable algorithms for numerical solution of elliptic variational inequalities and substantiates the choice of parameters that turned out to be effective in numerical experi
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Optimization and Applications
ISSN
0926-6003
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
23-44
Kód UT WoS článku
000286717700002
EID výsledku v databázi Scopus
—