Combined method for effective clustering based on parallel SOM and spectral clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A86084592" target="_blank" >RIV/61989100:27240/11:86084592 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combined method for effective clustering based on parallel SOM and spectral clustering
Popis výsledku v původním jazyce
The paper is oriented to the problem of clustering for large datasets with high-dimensions. We propose a two-phase combined method with regard to high dimensions and exploiting the standard clustering algorithm. The first step of the method is based on the learning phase using artificial neural network, especially Self organizing map, which we find as a suitable method for the reduction of the problem complexity. Due to the fact, that the learning phase of artificial neural networks can be time-consuming operation (especially for large highdimensional datasets), we decided to accelerate this phase using parallelization to improve the computational efficiency. The second phase of the proposed method is oriented to clustering. Because the visualization provided by Self organizing maps is depending on the map dimension, and is not as clear and comprehensible in the cases of clustering applications, we decided to use spectral clustering algorithm to obtain sufficient clusters. According to
Název v anglickém jazyce
Combined method for effective clustering based on parallel SOM and spectral clustering
Popis výsledku anglicky
The paper is oriented to the problem of clustering for large datasets with high-dimensions. We propose a two-phase combined method with regard to high dimensions and exploiting the standard clustering algorithm. The first step of the method is based on the learning phase using artificial neural network, especially Self organizing map, which we find as a suitable method for the reduction of the problem complexity. Due to the fact, that the learning phase of artificial neural networks can be time-consuming operation (especially for large highdimensional datasets), we decided to accelerate this phase using parallelization to improve the computational efficiency. The second phase of the proposed method is oriented to clustering. Because the visualization provided by Self organizing maps is depending on the map dimension, and is not as clear and comprehensible in the cases of clustering applications, we decided to use spectral clustering algorithm to obtain sufficient clusters. According to
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA205%2F09%2F1079" target="_blank" >GA205/09/1079: Metody umělé inteligence v GIS</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
DATESO 2011 : databases, texts, specifications, and objects : proceedings of the Dateso 2011 Workshop
ISBN
978-80-248-2391-1
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
120-131
Název nakladatele
Vysoká škola báňská - Technická univerzita, Fakulta elektrotechniky a informatiky, Katedra informatiky
Místo vydání
Ostrava
Místo konání akce
Písek
Datum konání akce
20. 4. 2011
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—