Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combined method for effective clustering based on parallel SOM and spectral clustering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A86084592" target="_blank" >RIV/61989100:27240/11:86084592 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combined method for effective clustering based on parallel SOM and spectral clustering

  • Popis výsledku v původním jazyce

    The paper is oriented to the problem of clustering for large datasets with high-dimensions. We propose a two-phase combined method with regard to high dimensions and exploiting the standard clustering algorithm. The first step of the method is based on the learning phase using artificial neural network, especially Self organizing map, which we find as a suitable method for the reduction of the problem complexity. Due to the fact, that the learning phase of artificial neural networks can be time-consuming operation (especially for large highdimensional datasets), we decided to accelerate this phase using parallelization to improve the computational efficiency. The second phase of the proposed method is oriented to clustering. Because the visualization provided by Self organizing maps is depending on the map dimension, and is not as clear and comprehensible in the cases of clustering applications, we decided to use spectral clustering algorithm to obtain sufficient clusters. According to

  • Název v anglickém jazyce

    Combined method for effective clustering based on parallel SOM and spectral clustering

  • Popis výsledku anglicky

    The paper is oriented to the problem of clustering for large datasets with high-dimensions. We propose a two-phase combined method with regard to high dimensions and exploiting the standard clustering algorithm. The first step of the method is based on the learning phase using artificial neural network, especially Self organizing map, which we find as a suitable method for the reduction of the problem complexity. Due to the fact, that the learning phase of artificial neural networks can be time-consuming operation (especially for large highdimensional datasets), we decided to accelerate this phase using parallelization to improve the computational efficiency. The second phase of the proposed method is oriented to clustering. Because the visualization provided by Self organizing maps is depending on the map dimension, and is not as clear and comprehensible in the cases of clustering applications, we decided to use spectral clustering algorithm to obtain sufficient clusters. According to

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA205%2F09%2F1079" target="_blank" >GA205/09/1079: Metody umělé inteligence v GIS</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    DATESO 2011 : databases, texts, specifications, and objects : proceedings of the Dateso 2011 Workshop

  • ISBN

    978-80-248-2391-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    120-131

  • Název nakladatele

    Vysoká škola báňská - Technická univerzita, Fakulta elektrotechniky a informatiky, Katedra informatiky

  • Místo vydání

    Ostrava

  • Místo konání akce

    Písek

  • Datum konání akce

    20. 4. 2011

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku