Artificial Weed Colonies with Neighbourhood Crowding Scheme for Multimodal Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084578" target="_blank" >RIV/61989100:27240/12:86084578 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-81-322-0487-9_74" target="_blank" >http://dx.doi.org/10.1007/978-81-322-0487-9_74</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-81-322-0487-9_74" target="_blank" >10.1007/978-81-322-0487-9_74</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Weed Colonies with Neighbourhood Crowding Scheme for Multimodal Optimization
Popis výsledku v původním jazyce
Multimodal optimization is used to find multiple global & local optima which is very useful in many real world optimization problems. But often evolutionary algorithms fail to locate multiple optima as required by the system. Also they fail to store those optima by themselves. So we have to use other selection scheme that can detect & store multiple optima along with evolutionary algorithms. Hence we use niching which is a very powerful tool in detecting & storing multiple optima. Niching methods were introduced to EAs to allow maintenance of a population of diverse individuals so that multiple optima within a single population can be located.Crowding which is a very primitive branch of niching is used here as the selection scheme with Invasive Weed Optimization (IWO) which is a ecologically inspired algorithms depicting behaviors of plants. For multimodal optimization the total search space is divided into several niches in which separately IWO is applied to find the optima in niches.
Název v anglickém jazyce
Artificial Weed Colonies with Neighbourhood Crowding Scheme for Multimodal Optimization
Popis výsledku anglicky
Multimodal optimization is used to find multiple global & local optima which is very useful in many real world optimization problems. But often evolutionary algorithms fail to locate multiple optima as required by the system. Also they fail to store those optima by themselves. So we have to use other selection scheme that can detect & store multiple optima along with evolutionary algorithms. Hence we use niching which is a very powerful tool in detecting & storing multiple optima. Niching methods were introduced to EAs to allow maintenance of a population of diverse individuals so that multiple optima within a single population can be located.Crowding which is a very primitive branch of niching is used here as the selection scheme with Invasive Weed Optimization (IWO) which is a ecologically inspired algorithms depicting behaviors of plants. For multimodal optimization the total search space is divided into several niches in which separately IWO is applied to find the optima in niches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent and Soft Computing. Volume 130
ISBN
978-81-322-0486-2
ISSN
1867-5662
e-ISSN
—
Počet stran výsledku
9
Strana od-do
779-787
Název nakladatele
Springer India
Místo vydání
Delhi
Místo konání akce
Roorkee
Datum konání akce
20. 12. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—