Self-adaptive differential particle swarm using a ring topology for multimodal optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092819" target="_blank" >RIV/61989100:27240/14:86092819 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/14:86092819
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ISDA.2013.6920430" target="_blank" >http://dx.doi.org/10.1109/ISDA.2013.6920430</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISDA.2013.6920430" target="_blank" >10.1109/ISDA.2013.6920430</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-adaptive differential particle swarm using a ring topology for multimodal optimization
Popis výsledku v původním jazyce
During the last couple of decades, evolutionary and swarm intelligence algorithms have significantly advanced the state of the art for both discrete and numerical optimization. Without niching strategies, they usually converge to a single optimum, even in multimodal search spaces where numerous global or local solutions exist. In the literature, several niching approaches have been proposed for simultaneously computing multiple optima, though most of them require some user-specified parameters that should be calculated a priori, i.e. additional knowledge about the problem domain is required. Recently, it was demonstrated that particle swarm optimization (PSO) using a ring topology for neighborhood definition can give rise to robust and parameterless niching methods. Nevertheless, their performance dramatically worsens when the dimensionality of the solution space hikes, thus increasing the number of local optima. This paper aims at enhancing the performance of these types of PSO-based
Název v anglickém jazyce
Self-adaptive differential particle swarm using a ring topology for multimodal optimization
Popis výsledku anglicky
During the last couple of decades, evolutionary and swarm intelligence algorithms have significantly advanced the state of the art for both discrete and numerical optimization. Without niching strategies, they usually converge to a single optimum, even in multimodal search spaces where numerous global or local solutions exist. In the literature, several niching approaches have been proposed for simultaneously computing multiple optima, though most of them require some user-specified parameters that should be calculated a priori, i.e. additional knowledge about the problem domain is required. Recently, it was demonstrated that particle swarm optimization (PSO) using a ring topology for neighborhood definition can give rise to robust and parameterless niching methods. Nevertheless, their performance dramatically worsens when the dimensionality of the solution space hikes, thus increasing the number of local optima. This paper aims at enhancing the performance of these types of PSO-based
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2013 International Conference on Intelligent Systems Design and Applications (ISDA 2013) : Universiti Putra Malaysia, Malaysia, 08-10 December, 2013
ISBN
978-1-4799-3516-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
35-40
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Serdang, Selangor
Datum konání akce
8. 12. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—