Unsupervised algorithm for post-processing of roughly segmented categorical time series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084589" target="_blank" >RIV/61989100:27240/12:86084589 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/12:86084589
Výsledek na webu
<a href="http://dx.doi.org/10.3182/20090210-3-CZ-4002.0031" target="_blank" >http://dx.doi.org/10.3182/20090210-3-CZ-4002.0031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3182/20090210-3-CZ-4002.0031" target="_blank" >10.3182/20090210-3-CZ-4002.0031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised algorithm for post-processing of roughly segmented categorical time series
Popis výsledku v původním jazyce
Many types of existing collections often contain repeating sequences which could be called as patterns. If these patterns are recognized they can be for instance used in data compression or for prediction. Extraction of these patterns from data collections with components generated in equidistant time and in finite number of levels is now a trivial task. The problem arises for data collections that are subject to different types of distortions in all axes. This paper discusses possibilities of using theVoting Experts algorithm enhanced by the Dynamic Time Warping (DTW) method. This algorithm is used for searching characteristic patterns in collections that are subject to the previously mentioned distortions. By using the Voting Experts high precisioncuts (but with low level of recall) are first created in the collection. These cuts are then processed using the DTW method to increase resulting recall. This algorithm has better quality indicators than the original Voting Experts algori
Název v anglickém jazyce
Unsupervised algorithm for post-processing of roughly segmented categorical time series
Popis výsledku anglicky
Many types of existing collections often contain repeating sequences which could be called as patterns. If these patterns are recognized they can be for instance used in data compression or for prediction. Extraction of these patterns from data collections with components generated in equidistant time and in finite number of levels is now a trivial task. The problem arises for data collections that are subject to different types of distortions in all axes. This paper discusses possibilities of using theVoting Experts algorithm enhanced by the Dynamic Time Warping (DTW) method. This algorithm is used for searching characteristic patterns in collections that are subject to the previously mentioned distortions. By using the Voting Experts high precisioncuts (but with low level of recall) are first created in the collection. These cuts are then processed using the DTW method to increase resulting recall. This algorithm has better quality indicators than the original Voting Experts algori
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
DATESO 2012 : databases, texts, specifications, and objects : proceedings of the Dateso 2012 Workshop : April 18-20, 2012, Zernov, Rovensko pod Troskami
ISBN
978-80-7378-171-2
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
81-92
Název nakladatele
MATFYZPRESS
Místo vydání
Praha
Místo konání akce
Žernov, Semily
Datum konání akce
18. 4. 2012
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—