Searching Time Series Based On Pattern Extraction Using Dynamic Time Warping
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F13%3A86088259" target="_blank" >RIV/61989100:27740/13:86088259 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cs.vsb.cz/dateso/sbornik/dateso13.pdf" target="_blank" >http://www.cs.vsb.cz/dateso/sbornik/dateso13.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Searching Time Series Based On Pattern Extraction Using Dynamic Time Warping
Popis výsledku v původním jazyce
Many types of data collections processed by time series ana- lysis often contain repeating similar episodes (patterns). If these patterns are recognized, then they may be used for instance in data compression, for prediction or for indexing large collections. Extraction of these patterns from data collections with components generated in equidistant time and in nite number of levels is now a trivial task. The problem arises for data collections that are a subject to di erent types of distortions in allaxes. In this type of collections, the found similar episodes do not have to be exactly the same; they can di er in time, shape or amplitude. In these cases, it is necessary to pick the suitable one from each group of similar episodes and to declare it as a representative member of the whole group. This paper discusses the possibilities of using the Dynamic Time Warping (DTW) method for deriving the representative member of a group of similar episodes that are subjects to the previously
Název v anglickém jazyce
Searching Time Series Based On Pattern Extraction Using Dynamic Time Warping
Popis výsledku anglicky
Many types of data collections processed by time series ana- lysis often contain repeating similar episodes (patterns). If these patterns are recognized, then they may be used for instance in data compression, for prediction or for indexing large collections. Extraction of these patterns from data collections with components generated in equidistant time and in nite number of levels is now a trivial task. The problem arises for data collections that are a subject to di erent types of distortions in allaxes. In this type of collections, the found similar episodes do not have to be exactly the same; they can di er in time, shape or amplitude. In these cases, it is necessary to pick the suitable one from each group of similar episodes and to declare it as a representative member of the whole group. This paper discusses the possibilities of using the Dynamic Time Warping (DTW) method for deriving the representative member of a group of similar episodes that are subjects to the previously
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings. Volume 971
ISBN
978-80-248-2968-5
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
10
Strana od-do
129-138
Název nakladatele
ceur-ws.org
Místo vydání
Aachen
Místo konání akce
Písek
Datum konání akce
17. 4. 2013
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—