Recognizing characteristic patterns in distorted data collections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F13%3A86088268" target="_blank" >RIV/61989100:27740/13:86088268 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognizing characteristic patterns in distorted data collections
Popis výsledku v původním jazyce
Many models and artificial intelligence methods work with the inputs in the form of time series. Generally, success of many of them strongly depends on ability to successfully manage input data, which often contains repeating similar episodes (patterns).If these patterns are recognized, they can be used for instance for indexing, prediction or compression. These operations can also be very useful for improving the already existing model performance and accuracy. Our effort is to provide a robust mechanism for retrieving these characteristic patterns from the collections that are subject of various distortions. The whole process of our pattern recognition consists of receiving the episodes, their clustering into the groups of similar episodes and deriving the representatives of each cluster. These representatives will be used for further indexing collections. This paper is focused on the last step of this process - receiving the representatives of concrete clusters using Dynamic Time W
Název v anglickém jazyce
Recognizing characteristic patterns in distorted data collections
Popis výsledku anglicky
Many models and artificial intelligence methods work with the inputs in the form of time series. Generally, success of many of them strongly depends on ability to successfully manage input data, which often contains repeating similar episodes (patterns).If these patterns are recognized, they can be used for instance for indexing, prediction or compression. These operations can also be very useful for improving the already existing model performance and accuracy. Our effort is to provide a robust mechanism for retrieving these characteristic patterns from the collections that are subject of various distortions. The whole process of our pattern recognition consists of receiving the episodes, their clustering into the groups of similar episodes and deriving the representatives of each cluster. These representatives will be used for further indexing collections. This paper is focused on the last step of this process - receiving the representatives of concrete clusters using Dynamic Time W
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
25th European Modeling and Simulation Symposium, EMSS 2013
ISBN
978-88-97999-22-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
238-243
Název nakladatele
DIME Universit? Di Genova
Místo vydání
Genova
Místo konání akce
Athény
Datum konání akce
25. 9. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—