An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86085078" target="_blank" >RIV/61989100:27240/12:86085078 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/12:86085078
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10107-011-0454-2" target="_blank" >http://dx.doi.org/10.1007/s10107-011-0454-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10107-011-0454-2" target="_blank" >10.1007/s10107-011-0454-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications
Popis výsledku v původním jazyce
We propose a modification of our MPGP algorithm for the solution of bound constrained quadratic programming problems so that it can be used for minimization of a strictly convex quadratic function subject to separable convex constraints. Our active set based algorithm explores the faces by conjugate gradients and changes the active sets and active variables by gradient projections, possibly with the superrelaxation steplength. The error estimate in terms of extreme eigenvalues guarantees that if a classof minimization problems has the spectrum of the Hessian matrix in a given positive interval, then the algorithm can find and recognize an approximate solution of any particular problem in a number of iterations that is uniformly bounded. We also show how to use the algorithm for the solution of separable and equality constraints. The power of our algorithm and its optimality are demonstrated on the solution of a problem of two cantilever beams in mutual contact with Tresca friction dis
Název v anglickém jazyce
An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications
Popis výsledku anglicky
We propose a modification of our MPGP algorithm for the solution of bound constrained quadratic programming problems so that it can be used for minimization of a strictly convex quadratic function subject to separable convex constraints. Our active set based algorithm explores the faces by conjugate gradients and changes the active sets and active variables by gradient projections, possibly with the superrelaxation steplength. The error estimate in terms of extreme eigenvalues guarantees that if a classof minimization problems has the spectrum of the Hessian matrix in a given positive interval, then the algorithm can find and recognize an approximate solution of any particular problem in a number of iterations that is uniformly bounded. We also show how to use the algorithm for the solution of separable and equality constraints. The power of our algorithm and its optimality are demonstrated on the solution of a problem of two cantilever beams in mutual contact with Tresca friction dis
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Programming
ISSN
0025-5610
e-ISSN
—
Svazek periodika
135
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
26
Strana od-do
195-220
Kód UT WoS článku
000308647100007
EID výsledku v databázi Scopus
—