Swarm scheduling approaches for work-flow applications with security constraints in distributed data-intensive computing environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86089196" target="_blank" >RIV/61989100:27240/12:86089196 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/12:86085185
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Swarm scheduling approaches for work-flow applications with security constraints in distributed data-intensive computing environments
Popis výsledku v původním jazyce
The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with amulti-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation
Název v anglickém jazyce
Swarm scheduling approaches for work-flow applications with security constraints in distributed data-intensive computing environments
Popis výsledku anglicky
The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with amulti-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
192
Číslo periodika v rámci svazku
Jun
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
228-243
Kód UT WoS článku
000302511900017
EID výsledku v databázi Scopus
—