Enriching ontology concepts based on texts from WWW and corpus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86092937" target="_blank" >RIV/61989100:27240/12:86092937 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enriching ontology concepts based on texts from WWW and corpus
Popis výsledku v původním jazyce
In spite of the growing of ontological engineering tools, ontology knowledge acquisition remains a highly manual, time-consuming and complex task. Automatic ontology learning is a well-established research field whose goal is to support the semi-automatic construction of ontologies starting from available digital resources (e.g., A corpus, web pages, dictionaries, semi-structured and structured sources) in order to reduce the time and effort in the ontology development process. This paper proposes an enhanced methodology for enriching Lexical Ontologies such as the popular open-domain vocabulary -WordNet. Ontologies like WordNet can be semantically enriched to obtain extensions and enhancements to its lexical database. The proliferation of senses in WordNet is considered as one of its main shortcomings for practical applications. Therefore, the presented methodology depends on the Coarse-Grained word senses. These senses are generated from applying WordNet Fine-Grained word senses to a
Název v anglickém jazyce
Enriching ontology concepts based on texts from WWW and corpus
Popis výsledku anglicky
In spite of the growing of ontological engineering tools, ontology knowledge acquisition remains a highly manual, time-consuming and complex task. Automatic ontology learning is a well-established research field whose goal is to support the semi-automatic construction of ontologies starting from available digital resources (e.g., A corpus, web pages, dictionaries, semi-structured and structured sources) in order to reduce the time and effort in the ontology development process. This paper proposes an enhanced methodology for enriching Lexical Ontologies such as the popular open-domain vocabulary -WordNet. Ontologies like WordNet can be semantically enriched to obtain extensions and enhancements to its lexical database. The proliferation of senses in WordNet is considered as one of its main shortcomings for practical applications. Therefore, the presented methodology depends on the Coarse-Grained word senses. These senses are generated from applying WordNet Fine-Grained word senses to a
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Universal Computer Science
ISSN
0948-6968
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
18
Strana od-do
2234-2251
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—