Improving differential evolution algorithm by synergizing different improvement mechanisms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86092947" target="_blank" >RIV/61989100:27240/12:86092947 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/2240166.2240170" target="_blank" >http://dx.doi.org/10.1145/2240166.2240170</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2240166.2240170" target="_blank" >10.1145/2240166.2240170</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving differential evolution algorithm by synergizing different improvement mechanisms
Popis výsledku v původním jazyce
Differential Evolution (DE) is a well-known Evolutionary Algorithm (EA) for solving global optimization problems. Practical experiences, however, show that DE is vulnerable to problems like slow and/ or premature convergence. In this article we propose asimple and modified DE framework, called MDE, which is a fusion of three recent modifications in DE: (1) Opposition-Based Learning (OBL); (2) tournament method for mutation; and (3) single population structure. These features have a specific role whichhelps in improving the performance of DE. While OBL helps in giving a good initial start to DE, the use of the tournament best base vector in the mutation phase helps in preserving the diversity. Finally the single population structure helps in faster convergence. Their synergized effect balances the exploitation and exploration capabilities of DE without compromising with the solution quality or the convergence rate. The proposed MDE is validated on a set of 25 standard benchmark proble
Název v anglickém jazyce
Improving differential evolution algorithm by synergizing different improvement mechanisms
Popis výsledku anglicky
Differential Evolution (DE) is a well-known Evolutionary Algorithm (EA) for solving global optimization problems. Practical experiences, however, show that DE is vulnerable to problems like slow and/ or premature convergence. In this article we propose asimple and modified DE framework, called MDE, which is a fusion of three recent modifications in DE: (1) Opposition-Based Learning (OBL); (2) tournament method for mutation; and (3) single population structure. These features have a specific role whichhelps in improving the performance of DE. While OBL helps in giving a good initial start to DE, the use of the tournament best base vector in the mutation phase helps in preserving the diversity. Finally the single population structure helps in faster convergence. Their synergized effect balances the exploitation and exploration capabilities of DE without compromising with the solution quality or the convergence rate. The proposed MDE is validated on a set of 25 standard benchmark proble
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F0990" target="_blank" >GA201/09/0990: Zpracování XML dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Autonomous and Adaptive Systems
ISSN
1556-4665
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
1-32
Kód UT WoS článku
000307171100004
EID výsledku v databázi Scopus
—