Analysis and removing noise from the speech signal using wavelet transforms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86086896" target="_blank" >RIV/61989100:27240/13:86086896 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1117/12.2015722" target="_blank" >http://dx.doi.org/10.1117/12.2015722</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2015722" target="_blank" >10.1117/12.2015722</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis and removing noise from the speech signal using wavelet transforms
Popis výsledku v původním jazyce
The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of th
Název v anglickém jazyce
Analysis and removing noise from the speech signal using wavelet transforms
Popis výsledku anglicky
The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of th
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of SPIE - The International Society for Optical Engineering. Volume 8750
ISBN
978-0-8194-9541-9
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
"87500D", 1-8
Název nakladatele
SPIE
Místo vydání
Bellingham
Místo konání akce
Baltimore
Datum konání akce
1. 5. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000324809400011