Scheduling flow shops with blocking using a discrete self-organising migrating algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86087192" target="_blank" >RIV/61989100:27240/13:86087192 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/70883521:28120/13:43869760
Výsledek na webu
<a href="http://dx.doi.org/10.1080/00207543.2012.711968" target="_blank" >http://dx.doi.org/10.1080/00207543.2012.711968</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00207543.2012.711968" target="_blank" >10.1080/00207543.2012.711968</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scheduling flow shops with blocking using a discrete self-organising migrating algorithm
Popis výsledku v původním jazyce
A novel approach of a discrete self-organising migrating algorithm is introduced to solve the flowshop with blocking scheduling problem. New sampling routines have been developed that propagate the space between solutions in order to drive the algorithm.The two benchmark problem sets of Carlier, Heller, Reeves and Taillard are solved using the new algorithm. The algorithm compares favourably with the published algorithms Differential Evolution, Tabu Search, Genetic Algorithms and their hybrid variants.A number of new upper bounds are obtained for the Taillard problem sets.
Název v anglickém jazyce
Scheduling flow shops with blocking using a discrete self-organising migrating algorithm
Popis výsledku anglicky
A novel approach of a discrete self-organising migrating algorithm is introduced to solve the flowshop with blocking scheduling problem. New sampling routines have been developed that propagate the space between solutions in order to drive the algorithm.The two benchmark problem sets of Carlier, Heller, Reeves and Taillard are solved using the new algorithm. The algorithm compares favourably with the published algorithms Differential Evolution, Tabu Search, Genetic Algorithms and their hybrid variants.A number of new upper bounds are obtained for the Taillard problem sets.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Production Research
ISSN
0020-7543
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
2200-2218
Kód UT WoS článku
000315460200001
EID výsledku v databázi Scopus
—