Mean shift with flatness constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088922" target="_blank" >RIV/61989100:27240/13:86088922 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-642-38886-6_11#page-1" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-38886-6_11#page-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-38886-6_11" target="_blank" >10.1007/978-3-642-38886-6_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mean shift with flatness constraints
Popis výsledku v původním jazyce
Mean shift still belongs to the intensively developed image-segmentation methods. Appropriately setting so called bandwidth, which is richly discussed in literature, seems to be one of its problems. If the bandwidth is too small, the results suffer fromover-segmentation. If it is too big, the edges need not be preserved sufficiently and the details can be lost. In this paper, we address the problem of over-segmentation and preserving the edges in mean shift too. However, we do not aim at proposing a further method for determining the bandwidth. Instead, we modify the mean-shift method itself. We show that the problems with over-segmentation are inherent for mean shift and follow from its theoretical essence. We also show that the mean-shift process can be seen as a process of solving a certain Euler-Lagrange equation and as a process of maximising a certain functional. In contrast with other known functional approaches, however, only the fidelity term is present in it. Other usual ter
Název v anglickém jazyce
Mean shift with flatness constraints
Popis výsledku anglicky
Mean shift still belongs to the intensively developed image-segmentation methods. Appropriately setting so called bandwidth, which is richly discussed in literature, seems to be one of its problems. If the bandwidth is too small, the results suffer fromover-segmentation. If it is too big, the edges need not be preserved sufficiently and the details can be lost. In this paper, we address the problem of over-segmentation and preserving the edges in mean shift too. However, we do not aim at proposing a further method for determining the bandwidth. Instead, we modify the mean-shift method itself. We show that the problems with over-segmentation are inherent for mean shift and follow from its theoretical essence. We also show that the mean-shift process can be seen as a process of solving a certain Euler-Lagrange equation and as a process of maximising a certain functional. In contrast with other known functional approaches, however, only the fidelity term is present in it. Other usual ter
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science. Volume 7944
ISBN
978-3-642-38885-9
ISSN
1868-4238
e-ISSN
—
Počet stran výsledku
12
Strana od-do
107-118
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Espoo
Datum konání akce
17. 6. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—