Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088970" target="_blank" >RIV/61989100:27240/13:86088970 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.cs.vsb.cz/sawa/papers/fi2013.pdf" target="_blank" >http://www.cs.vsb.cz/sawa/papers/fi2013.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/FI-2013-802" target="_blank" >10.3233/FI-2013-802</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata

  • Popis výsledku v původním jazyce

    In languages over a unary alphabet, i.e., an alphabet with only one letter, words can be identified with their lengths. It is well known that each regular language over a unary alphabet can be represented as the union of a finite number of arithmetic progressions. Given a nondeterministic finite automaton (NFA) working over a unary alphabet (a unary NFA), the arithmetic progressions representing the language accepted by the automaton can be easily computed by the determinization of the given NFA. However, the number of the arithmetic progressions computed in this way can be exponential with respect to the size of the original automaton. Chrobak (1986) has shown that in fact O(n^2) arithmetic progressions are sufficient for the representation of the language accepted by a unary NFA with n states, and Martinez (2002) has shown how these progressions can be computed in polynomial time. Recently, To (2009) has pointed out that Chrobak's construction and Martinez's algorithm, which is based

  • Název v anglickém jazyce

    Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata

  • Popis výsledku anglicky

    In languages over a unary alphabet, i.e., an alphabet with only one letter, words can be identified with their lengths. It is well known that each regular language over a unary alphabet can be represented as the union of a finite number of arithmetic progressions. Given a nondeterministic finite automaton (NFA) working over a unary alphabet (a unary NFA), the arithmetic progressions representing the language accepted by the automaton can be easily computed by the determinization of the given NFA. However, the number of the arithmetic progressions computed in this way can be exponential with respect to the size of the original automaton. Chrobak (1986) has shown that in fact O(n^2) arithmetic progressions are sufficient for the representation of the language accepted by a unary NFA with n states, and Martinez (2002) has shown how these progressions can be computed in polynomial time. Recently, To (2009) has pointed out that Chrobak's construction and Martinez's algorithm, which is based

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP202%2F11%2F0340" target="_blank" >GAP202/11/0340: Modelování a verifikace paralelních systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fundamenta Informaticae

  • ISSN

    0169-2968

  • e-ISSN

  • Svazek periodika

    123

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    97-106

  • Kód UT WoS článku

    000317267500007

  • EID výsledku v databázi Scopus