Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088970" target="_blank" >RIV/61989100:27240/13:86088970 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cs.vsb.cz/sawa/papers/fi2013.pdf" target="_blank" >http://www.cs.vsb.cz/sawa/papers/fi2013.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FI-2013-802" target="_blank" >10.3233/FI-2013-802</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata
Popis výsledku v původním jazyce
In languages over a unary alphabet, i.e., an alphabet with only one letter, words can be identified with their lengths. It is well known that each regular language over a unary alphabet can be represented as the union of a finite number of arithmetic progressions. Given a nondeterministic finite automaton (NFA) working over a unary alphabet (a unary NFA), the arithmetic progressions representing the language accepted by the automaton can be easily computed by the determinization of the given NFA. However, the number of the arithmetic progressions computed in this way can be exponential with respect to the size of the original automaton. Chrobak (1986) has shown that in fact O(n^2) arithmetic progressions are sufficient for the representation of the language accepted by a unary NFA with n states, and Martinez (2002) has shown how these progressions can be computed in polynomial time. Recently, To (2009) has pointed out that Chrobak's construction and Martinez's algorithm, which is based
Název v anglickém jazyce
Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata
Popis výsledku anglicky
In languages over a unary alphabet, i.e., an alphabet with only one letter, words can be identified with their lengths. It is well known that each regular language over a unary alphabet can be represented as the union of a finite number of arithmetic progressions. Given a nondeterministic finite automaton (NFA) working over a unary alphabet (a unary NFA), the arithmetic progressions representing the language accepted by the automaton can be easily computed by the determinization of the given NFA. However, the number of the arithmetic progressions computed in this way can be exponential with respect to the size of the original automaton. Chrobak (1986) has shown that in fact O(n^2) arithmetic progressions are sufficient for the representation of the language accepted by a unary NFA with n states, and Martinez (2002) has shown how these progressions can be computed in polynomial time. Recently, To (2009) has pointed out that Chrobak's construction and Martinez's algorithm, which is based
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F11%2F0340" target="_blank" >GAP202/11/0340: Modelování a verifikace paralelních systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fundamenta Informaticae
ISSN
0169-2968
e-ISSN
—
Svazek periodika
123
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
97-106
Kód UT WoS článku
000317267500007
EID výsledku v databázi Scopus
—