Initializing reservoirs with exhibitory and inhibitory signals using unsupervised learning techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86089064" target="_blank" >RIV/61989100:27240/13:86089064 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/13:86089064
Výsledek na webu
<a href="http://dx.doi.org/10.1145/2542050.2542087" target="_blank" >http://dx.doi.org/10.1145/2542050.2542087</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2542050.2542087" target="_blank" >10.1145/2542050.2542087</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Initializing reservoirs with exhibitory and inhibitory signals using unsupervised learning techniques
Popis výsledku v původním jazyce
The trend of Reservoir Computing (RC) has been gaining prominence in the Neural Computation community since the 2000s. In a RC model there are at least two well-differentiated structures. One is a recurrent part called reservoir, which expands the inputdata and historical information into a high-dimensional space. This projection is carried out in order to enhance the linear separability of the input data. Another part is a memory-less structure designed to be robust and fast in the learning process. RC models are an alternative of Turing Machines and Recurrent Neural Networks to model cognitive processing in the neural system. Additionally, they are interesting Machine Learning tools to Time Series Modeling and Forecasting. Recently a new RC model was introduced under the name of Echo State Queueing Networks (ESQN). In this model the reservoir is a dynamical system which arises from the Queueing Theory. The initialization of the reservoir parameters may influence the model performanc
Název v anglickém jazyce
Initializing reservoirs with exhibitory and inhibitory signals using unsupervised learning techniques
Popis výsledku anglicky
The trend of Reservoir Computing (RC) has been gaining prominence in the Neural Computation community since the 2000s. In a RC model there are at least two well-differentiated structures. One is a recurrent part called reservoir, which expands the inputdata and historical information into a high-dimensional space. This projection is carried out in order to enhance the linear separability of the input data. Another part is a memory-less structure designed to be robust and fast in the learning process. RC models are an alternative of Turing Machines and Recurrent Neural Networks to model cognitive processing in the neural system. Additionally, they are interesting Machine Learning tools to Time Series Modeling and Forecasting. Recently a new RC model was introduced under the name of Echo State Queueing Networks (ESQN). In this model the reservoir is a dynamical system which arises from the Queueing Theory. The initialization of the reservoir parameters may influence the model performanc
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0055" target="_blank" >EE2.3.30.0055: Nové kreativní týmy v prioritách vědeckého bádání</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACM International Conference Proceeding Series 2013
ISBN
978-1-4503-2454-0
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
53-60
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Da Nang
Datum konání akce
5. 12. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—