Unconventional initialization methods for differential evolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86092931" target="_blank" >RIV/61989100:27240/13:86092931 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.amc.2012.10.053" target="_blank" >http://dx.doi.org/10.1016/j.amc.2012.10.053</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2012.10.053" target="_blank" >10.1016/j.amc.2012.10.053</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unconventional initialization methods for differential evolution
Popis výsledku v původním jazyce
The crucial role played by the initial population in a population-based heuristic optimization cannot be neglected. It not only affects the search for several iterations but often also has an influence on the final solution. If the initial population itself has some knowledge about the potential regions of the search domain then it is quite likely to accelerate the rate of convergence of the optimization algorithm. In the present study we propose two schemes for generating the initial population of differential evolution (DE) algorithm. These schemes are based on quadratic interpolation (QI) and nonlinear simplex method (NSM) in conjugation with computer generated random numbers. The idea is to construct a population that is biased towards the optimumsolution right from the very beginning of the algorithm. The corresponding algorithms named as QIDE (using quadratic interpolation) and NSDE (using non linear simplex method), are tested on a set of 20 traditional benchmark problems with
Název v anglickém jazyce
Unconventional initialization methods for differential evolution
Popis výsledku anglicky
The crucial role played by the initial population in a population-based heuristic optimization cannot be neglected. It not only affects the search for several iterations but often also has an influence on the final solution. If the initial population itself has some knowledge about the potential regions of the search domain then it is quite likely to accelerate the rate of convergence of the optimization algorithm. In the present study we propose two schemes for generating the initial population of differential evolution (DE) algorithm. These schemes are based on quadratic interpolation (QI) and nonlinear simplex method (NSM) in conjugation with computer generated random numbers. The idea is to construct a population that is biased towards the optimumsolution right from the very beginning of the algorithm. The corresponding algorithms named as QIDE (using quadratic interpolation) and NSDE (using non linear simplex method), are tested on a set of 20 traditional benchmark problems with
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Svazek periodika
219
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
4474-4494
Kód UT WoS článku
000312366700030
EID výsledku v databázi Scopus
—